Abstract

In the present study, the dynamic behavior of the last stage low-pressure steam turbine blade with fir-tree root at different conditions of blade root flank faces and their interfaces with rotor groove have been analyzed. Modal analysis has been done using a finite element approach to evaluate natural frequencies and evaluation of Campbell diagram generated under these conditions. For this, both healthy and defective blade have been taken. Since the variable crack size of fir-tree root flank has been taken, the excitation pattern has been evaluated due to stiffness variation of the cracked blade. This analysis provides the basis of excitation pattern of cracked blades due to inherent character and critical stressed zone. The outcome of this study forms the guidelines and checks during the fitting of blades in rotor assembly and its checks during health audit, overhaul, overspeed balancing test, and frequency turning.

References

1.
Mazur
,
Z.
,
García-Illescas
,
R.
, and
Porcayo-Calderón
,
J.
,
2009
, “
Last Stage Blades Failure Analysis of a 28MW Geothermal Turbine
,”
Eng. Fail. Anal.
,
16
(
4
), pp.
1020
1032
. 10.1016/j.engfailanal.2008.05.012
2.
Singh
,
G. D.
, and
Rawtani
,
S.
,
1982
, “
Fir Tree Fastening of Turbomachinery Blades—I: Deflection Analysis
,”
Int. J. Mech. Sci.
,
24
(
6
), pp.
377
384
. 10.1016/0020-7403(82)90071-6
3.
Segura
,
J. A.
,
Castro
,
L.
,
Rosales
,
I.
,
Rodriguez
,
J. A.
,
Urquiza
,
G.
, and
Rodriguez
,
J. M.
,
2017
, “
Dignostic and Failure Analysis in Blades of a 300 MW Steam Turbine
,”
Eng. Fail. Anal.
,
82
, pp.
631
641
. 10.1016/j.engfailanal.2017.04.039
4.
Kubiak Sz
,
J.
,
Segura
,
J. A.
,
Gonzalez R
,
G.
,
García
,
J. C.
,
Sierra E
,
F.
,
Nebradt G
,
J.
, and
Rodriguez
,
J. A.
,
2009
, “
Failure Analysis of the 350 MW Steam Turbine Blade Root
,”
Eng. Fail. Anal.
,
16
(
4
), pp.
1270
1281
. 10.1016/J.ENGFAILANAL.2008.08.015
5.
Katinić
,
M.
,
Kozak
,
D.
,
Gelo
,
I.
, and
Damjanović
,
D.
,
2019
, “
Corrosion Fatigue Failure of Steam Turbine Moving Blades: A Case Study
,”
Eng. Fail. Anal.
,
106
, p.
104136
. 10.1016/j.engfailanal.2019.08.002
6.
Zboiński
,
G.
,
1993
, “
Finite Element Computer Program for Incremental Analysis of Large Three-Dimensional Frictional Contact Problems of Linear Elasticity
,”
Comput. Struct.
,
46
(
4
), pp.
679
687
. 10.1016/0045-7949(93)90396-U
7.
Zboinski
,
G.
,
1995
, “
Physical and Geometrical Non-Linearities in Contact Problems of Elastic Turbine Blade Attachments
,”
Proc. Inst. Mech. Eng., Part C
,
209
(
4
), pp.
273
286
. 10.1243/PIME_PROC_1995_209_154_02
8.
Meguid
,
S. A.
,
Kanth
,
P. S.
, and
Czekanski
,
A.
,
2000
, “
Finite Element Analysis of Fir-Tree Region in Turbine Discs
,”
Finite Elem. Anal. Des.
,
35
(
4
), pp.
305
317
. 10.1016/S0168-874X(99)00072-4
9.
Shukla
,
A.
, and
Harsha
,
S. P.
,
2015
, “
An Experimental and FEM Modal Analysis of Cracked and Normal Steam Turbine Blade
,”
Mater. Today Proc.
,
2
(
4–5
), pp.
2056
2063
. 10.1016/J.MATPR.2015.07.191
10.
Shukla
,
A.
, and
Harsha
,
S. P.
,
2016
, “
Vibration Response Analysis of Last Stage LP Turbine Blades for Variable Size of Crack in Root
,”
Procedia Technol.
,
23
, pp.
232
239
. 10.1016/j.protcy.2016.03.022
11.
Di Lorenzo
,
E.
,
Petrone
,
G.
,
Manzato
,
S.
,
Peeters
,
B.
,
Desmet
,
W.
, and
Marulo
,
F.
,
2016
, “
Damage Detection in Wind Turbine Blades by Using Operational Modal Analysis
,”
Struct. Heal. Monit.
,
15
(
3
), pp.
289
301
. 10.1177/1475921716642748
12.
Kou
,
H.-j.
,
Lin
,
J.-s.
,
Zhang
,
J.-h.
, and
Fu
,
X.
,
2017
, “
Dynamic and Fatigue Compressor Blade Characteristics During Fluid-Structure Interaction: Part I—Blade Modelling and Vibration Analysis
,”
Eng. Fail. Anal.
,
76
, pp.
80
98
. 10.1016/j.engfailanal.2017.02.002
You do not currently have access to this content.