Abstract

As structures increase in complexity, in the use of high-performing materials and designs, their health assessment becomes increasingly challenging. Ultrasonic guided waves (UGWs) have shown to be very promising in the inspection of large (i.e., aerospace components) attenuating (i.e., composite materials) structures and have been successfully employed for damage detection in a variety of fields. The intrinsic complex nature of UGWs, due to their dispersive behavior, combined with the structural complexity of the applications, though, makes the interpretation of UGW inspections very challenging. Numerical simulations of UGW propagation become crucial to this end and have been addressed with fully numerical, semi-analytical, and hybrid approaches. The capability of predicting UGW scattering can inform experimental testing in optimizing the sensitivity of UGW inspections to specific waveguides and defects, and in interpreting the acquired data for the nondestructive identification and quantification of damages. In this work, an improved computational tool for UGW scattering predictions is presented. The approach relies on the global-local method and leverages the efficiency of the semi-analytical finite element (SAFE) method and the parallelized implementation of the coupled solution. Two-dimensional applications of the global-local approach for UGW scattering predictions in composite structures over a wide range of frequencies will be presented, together with the demonstration of the improved computational performance. The computational efficiency promises feasible and reliable UGWs predictions in multilayered complex assemblies and different damage scenarios, and enables virtual UGWs inspections and future integration in non-destructive evaluation (NDE) testing.

References

1.
Cawley
,
P.
,
Lowe
,
M. J. S.
,
Alleyne
,
D.
,
Pavlakovic
,
B.
, and
Wilcox
,
P.
,
2003
, “
Practical Long Range Guided Wave Testing: Applications to Pipes and Rail
,”
Mater. Eval.
,
61
(
1
), pp.
66
74
.
2.
Wilcox
,
P.
,
Pavlakovic
,
B.
,
Evans
,
M.
,
Vine
,
K.
,
Cawley
,
P.
,
Lowe
,
M. J. S.
, and
Alleyne
,
D. N.
,
2003
, “
Long Range Inspection of Rail Using Guided Waves
,”
AIP Conf. Proc.
,
657
(
1
), pp.
236
243
.
3.
Bartoli
,
I.
,
Lanza di Scalea
,
F.
,
Fateh
,
M.
, and
Viola
,
E.
,
2005
, “
Modeling Guided Wave Propagation With Application to the Long-Range Defect Detection in Railroad Tracks
,”
NDT&E Int.
,
38
(
5
), pp.
325
334
.
4.
Capriotti
,
M.
,
Kim
,
H. E.
,
Scalea
,
F. L. D.
, and
Kim
,
H.
,
2017
, “
Non-Destructive Inspection of Impact Damage in Composite Aircraft Panels by Ultrasonic Guided Waves and Statistical Processing
,”
Materials
,
10
(
6
), p.
616
.
5.
Matt
,
H.
,
Bartoli
,
I.
, and
Lanza di Scalea
,
F.
,
2005
, “
Ultrasonic Guided Wave Monitoring of Composite Wing Skin-to-Spar Bonded Joints in Aerospace Structures
,”
J. Acoust. Soc. Am.
,
118
(
4
), pp.
2240
2252
.
6.
Rose
,
J. L.
,
2014
,
Ultrasonic Guided Waves in Solid Media
,
Cambridge University Press
, New York.
7.
Poddar
,
B.
, and
Giurgiutiu
,
V.
,
2016
, “
Scattering of Lamb Waves From a Discontinuity: An Improved Analytical Approach
,”
Wave Motion
,
65
, pp.
79
91
.
8.
Poddar
,
B.
, and
Giurgiutiu
,
V.
,
2016
, “
Complex Modes Expansion With Vector Projection Using Power Flow to Simulate Lamb Waves Scattering From Horizontal Cracks and Disbonds
,”
J. Acoust. Soc. Am.
,
140
(
3
), pp.
2123
2133
.
9.
Faisal Haider
,
M.
,
Bhuiyan
,
M. Y.
,
Poddar
,
B.
,
Lin
,
B.
, and
Giurgiutiu
,
V.
,
2018
, “
Analytical and Experimental Investigation of the Interaction of Lamb Waves in a Stiffened Aluminum Plate With a Horizontal Crack at the Root of the Stiffener
,”
J. Sound Vib.
,
431
, pp.
212
225
.
10.
Ricci
,
F.
,
Monaco
,
E.
,
Maio
,
L.
,
Boffa
,
N.
, and
Mal
,
A. K.
,
2016
, “
Guided Waves in a Stiffened Composite Laminate With a Delamination
,”
Struct. Health Monit.
,
15
(
3
), pp.
351
358
.
11.
Hervin
,
F.
,
Maio
,
L.
, and
Fromme
,
P.
,
2021
, “
Guided Wave Scattering at a Delamination in a Quasi-Isotropic Composite Laminate: Experiment and Simulation
,”
Compos. Struct.
,
275
, p.
114406
.
12.
Srivastava
,
A.
, and
Lanza di Scalea
,
F.
,
2010
, “
Quantitative Structural Health Monitoring by Ultrasonic Guided Waves
,”
J. Eng. Mech.
,
136
(
8
), pp.
937
944
.
13.
Mal
,
A.
, and
Chang
,
Z.
,
2000
, “
A Semi-Numerical Method for Elastic Wave Scattering Calculations
,”
Geophys. J. Int.
,
143
(
2
), pp.
328
334
.
14.
Al-Nassar
,
Y. N.
,
Datta
,
S. K.
, and
Shah
,
A. H.
,
1991
, “
Scattering of Lamb Waves by a Normal Rectangular Strip Weldment
,”
Ultrasonics
,
29
(
2
), pp.
125
132
.
15.
Karim
,
M. R.
,
Awal
,
M. A.
, and
Kundu
,
T.
,
1992
, “
Elastic Wave Scattering by Cracks and Inclusions in Plates: In-Plane Case
,”
Int. J. Solids Struct.
,
29
(
19
), pp.
2355
2367
.
16.
Chang
,
Z.
, and
Mal
,
A. K.
,
1995
,
A Global-Local Method for Wave Propagation Across a Lap Joint
,
Proceedings of the ASME Applied Mechanics Division (AMD)
,
San Francisco, CA
,
Nov. 12–17
, vol.
204
, p.
1
.
17.
Galán
,
J. M.
, and
Abascal
,
R.
,
2002
, “
Numerical Simulation of Lamb Wave Scattering in Semi-Infinite Plates
,”
Int. J. Numer. Methods Eng.
,
53
(
5
), pp.
1145
1173
.
18.
Galán
,
J. M.
, and
Abascal
,
R.
,
2005
, “
Boundary Element Solution for the Bidimensional Scattering of Guided Waves in Laminated Plates
,”
Comput. Struct.
,
83
(
10–11
), pp.
740
757
.
19.
Karunasena
,
W. M.
,
Liew
,
K. M.
, and
Kitipornchai
,
S.
,
1995
, “
Hybrid Analysis of Lamb Wave Reflection by a Crack at the Fixed Edge of a Composite Plate
,”
Comput. Methods Appl. Mech. Eng.
,
125
(
1–4
), pp.
221
233
.
20.
Dong
,
S. B.
, and
Goetschel
,
D. B.
,
1982
, “
Edge Effects in Laminated Composite Plates
,”
ASME J. Appl. Mech.
,
49
(
1
), pp.
129
135
.
21.
Karim
,
M. R.
,
Kundu
,
T.
, and
Desai
,
C. S.
,
1989
, “
Detection of Delamination Cracks in Layered Fiber-Reinforced Composite Plates
,”
ASME J. Pressure Vessel Technol.
,
3
(
2
), pp.
165
171
.
22.
Tian
,
J.
,
Gabbert
,
U.
,
Berger
,
H.
, and
Su
,
X.
,
2004
, “
Lamb Wave Interaction With Delaminations in CFRP Laminates
,”
Comput. Mater. Continua
,
1
(
4
), pp.
327
336
.
23.
Datta
,
S. K.
,
Ju
,
T. H.
, and
Shah
,
A. H.
,
1992
, “
Scattering of an Impact Wave by a Crack in a Composite Plate
,”
ASME J. Appl. Mech.
,
59
(
3
), pp.
596
603
.
24.
Joseph
,
R.
,
Li
,
L.
,
Haider
,
M. F.
, and
Giurgiutiu
,
V.
,
2019
, “
Hybrid SAFE-GMM Approach for Predictive Modeling of Guided Wave Propagation in Layered Media
,”
Eng. Struct.
,
193
, pp.
194
206
.
25.
Goetschel
,
D. B.
,
Dong
,
S. B.
, and
Muki
,
R.
,
1982
, “
A Global Local Finite Element Analysis of Axisymmetric Scattering of Elastic Waves
,”
ASME J. Appl. Mech.
,
49
(
4
), pp.
816
820
.
26.
Rattanawangcharoen
,
N.
,
Zhuang
,
W.
,
Shah
,
A. H.
, and
Datta
,
S. K.
,
1997
, “
Axisymmetric Guided Waves in Jointed Laminated Cylinders
,”
J. Eng. Mech.
,
123
(
10
), pp.
1020
1026
.
27.
Zhuang
,
W.
,
Shah
,
A. H.
, and
Datta
,
S. K.
,
1997
, “
Axisymmetric Guided Wave Scattering by Cracks in Welded Steel Pipes
,”
ASME J. Pressure Vessel Technol.
,
119
(
4
), pp.
401
406
.
28.
Chang
,
Z.
, and
Mal
,
A.
,
1999
, “
Scattering of Lamb Waves From a Rivet Hole with Edge Cracks
,”
Mech. Mater.
,
31
(
3
), pp.
197
204
.
29.
Taweel
,
H.
,
Dong
,
S. B.
, and
Kazic
,
M.
,
2000
, “
Wave Reflection From the Free end of a Cylinder With an Arbitrary Cross-Section
,”
Int. J. Solids Struct.
,
37
(
12
), pp.
1701
1726
.
30.
Benmeddour
,
F.
,
Treyssède
,
F.
, and
Laguerre
,
L.
,
2011
, “
Numerical Modeling of Guided Wave Interaction with Non-Axisymmetric Cracks in Elastic Cylinders
,”
Int. J. Solids Struct.
,
48
(
5
), pp.
764
774
.
31.
Ryue
,
J.
,
Thompson
,
D. J.
,
White
,
P. R.
, and
Thompson
,
D. R.
,
2011
, “
Wave Reflection and Transmission Due to Defects in Infinite Structural Waveguides at High Frequencies
,”
J. Sound Vib.
,
330
(
8
), pp.
1737
1753
.
32.
Spada
,
A.
,
Capriotti
,
M.
, and
Lanza di Scalea
,
F.
,
2021
, “
Global-Local Model for 3D Guided Wave Scattering With Application to Rail Flaw Detection and Quantification
,”
Struct. Health. Monit.
,
21
(
2
), pp.
370
386
.
33.
Bartoli
,
I.
,
Marzani
,
A.
,
Lanza di Scalea
,
F.
, and
Viola
,
E.
,
2006
, “
Modeling Wave Propagation in Damped Waveguides of Arbitrary Cross-Section
,”
J. Sound Vib.
,
295
(
3–5
), pp.
685
707
.
34.
Ahmad
,
Z. A. B.
,
Vivar-Perez
,
J. M.
, and
Gabbert
,
U.
,
2013
, “
Semi-analytical Finite Element Method for Modeling of Lamb Wave Propagation
,”
CEAS Aeronaut. J.
,
4
(
1
), pp.
21
33
.
35.
Hayashi
,
T.
,
Song
,
W. J.
, and
Rose
,
J. L.
,
2003
, “
Guided Wave Dispersion Curves for a Bar With an Arbitrary Cross-Section, a Rod and Rail Example
,”
Ultrasonics
,
41
(
3
), pp.
175
183
.
36.
Spada
,
A.
,
Capriotti
,
M.
, and
Lanza di Scalea
,
F.
,
2020
, “
Global-Local Model for Guided Wave Scattering Problems With Application to Defect Characterization in Built-Up Composite Structures
,”
Int. J. Solids Struct.
,
182–183
, pp.
267
280
.
37.
Gustafson
,
J. L.
,
2011
, “Gustafson's Law,”
Encyclopedia of Parallel Computing
,
D.
Padua
, ed.,
Springer
,
Boston, MA
, pp.
819
825
.
38.
Zhou
,
W. J.
, and
Ichchou
,
M. N.
,
2011
, “
Wave Scattering by Local Defect in Structural Waveguide Through Wave Finite Element Method
,”
Struct. Health Monit.
,
10
(
4
), pp.
335
349
.
39.
Mallouli
,
M.
,
Ben Souf
,
M. A.
,
Bareille
,
O.
,
Ichchou
,
M. N.
,
Fakhfakh
,
T.
, and
Haddar
,
M.
,
2018
, “
Transient Wave Scattering and Forced Response Analysis of Damaged Composite Beams Through a Hybrid Finite Element-Wave Based Method
,”
Finite Elem. Anal. Des.
,
147
, pp.
1
9
.
40.
Malik
,
M. K.
,
Chronopoulos
,
D.
, and
Tanner
,
G.
,
2020
, “
Transient Ultrasonic Guided Wave Simulation in Layered Composite Structures Using a Hybrid Wave and Finite Element Scheme
,”
Compos. Struct.
,
246
, p.
112376
.
41.
Giurgiutiu
,
V.
,
2018
, “
Predictive Simulation of Guided Wave Structural Health Monitoring in Metallic and Composite Structures
,”
9th European Workshop on Structural Health Monitoring EWSHM 2018
,
Hilton Manchester, Deansgate, Manchester, UK
,
July 10–13
, Paper 0011.
42.
Marzani
,
A.
,
2008
, “
Time–Transient Response for Ultrasonic Guided Waves Propagating in Damped Cylinders
,”
Int. J. Solids Struct.
,
45
(
25–26
), pp.
6347
6368
.
43.
Mukdadi
,
O. M.
, and
Datta
,
S. K.
,
2003
, “
Transient Ultrasonic Guided Waves in Layered Plates With Rectangular Cross Section
,”
J. Appl. Phys.
,
93
(
11
), pp.
9360
9370
.
44.
Gustafson
,
J. L.
,
2011
, “Amdahl's Law,”
Encyclopedia of Parallel Computing
,
D.
Padua
, ed.,
Springer
,
Boston, MA
, pp.
53
60
.
45.
Capriotti
,
M.
,
Lanza di Scalea
,
F.
, and
Spada
,
A.
,
2020
, “
The Global-Local Approach for Damage Detection in Composite Structures and Rails
,”
European Workshop on Structural Health Monitoring
,
Springer, Cham
,
July
, pp.
838
847
.
46.
Alleyne
,
D.
, and
Cawley
,
P.
,
1991
, “
A two-Dimensional Fourier Transform Method for the Measurement of Propagating Multimode Signals
,”
J. Acoust. Soc. Am.
,
89
(
3
), pp.
1159
1168
.
You do not currently have access to this content.