Abstract

The size of bearing outer ring spalling failures has a significant impact on the vibration and service life of rotating machinery. It is necessary to judge the size of the outer ring fault size. Most of the vibration analyses identify the bearing fault size only in terms of the shock interval. The decreasing impact of the shock on the vibration signal will be related to the identification accuracy of the shock interval. This study aims to identify some feasible vibration signal processing methods for the identification of outer ring spalling sizes of ball bearings based on a modified energy value. The method involves the influence of impact forces on the measured vibration characteristics. According to the simulation analysis, the mapping relationship between the vibration signals with different fault sizes and the modified energy value is obtained. Then, the size of the spalling failure size of the ball-bearing outer ring is determined. Compared to existing methods, the proposed method is less affected by impact forces. Simulation and experiment results have verified the accuracy of this fault size identification.

References

1.
Cui
,
L. L.
,
Huang
,
J. F.
,
Zhang
,
F. B.
, and
Chu
,
F. L.
,
2019
, “
HVSRMS Localization Formula and Localization Law: Localization Diagnosis of a Ball Bearing Outer Ring Fault
,”
Mech. Syst. Signal Process
,
120
, pp.
608
629
.
2.
Sharma
,
V.
,
Raghuwanshi
,
N. K.
, and
Jain
,
A. K.
,
2021
, “
Sensitive Sub-Band Selection Criteria for Empirical Wavelet Transform to Detect Bearing Fault Based on Vibration Signals
,”
J. Vib. Eng. Technol.
,
9
(
7
), pp.
1
15
.
3.
Hu
,
B. B.
,
Guo
,
C.
,
Wu
,
J. M.
,
Tang
,
J. H.
,
Zhang
,
J. L.
, and
Wang
,
Y.
,
2019
, “
An Adaptive Periodical Stochastic Resonance Method Based on the Grey Wolf Optimizer Algorithm and Its Application in Rolling Bearing Fault Diagnosis
,”
ASME J. Vib. Acoust.
,
141
(
4
), p.
041016
.
4.
Zhang
,
F. B.
,
Huang
,
J. F.
,
Chu
,
F. L.
, and
Cui
,
L. L.
,
2020
, “
Mechanism and Method for Outer Raceway Defect Localization of Ball Bearings
,”
IEEE Access.
,
8
, pp.
4351
4360
.
5.
Shi
,
H. T.
,
Li
,
Y. Y.
,
Bai
,
X. T.
,
Wang
,
Z. N.
,
Zou
,
D. F.
,
Bao
,
Z.
, and
Wang
,
Z.
,
2021
, “
Investigation of the Orbit-Spinning Behaviors of the Outer Ring in a Full Ceramic Ball Bearing-Steel Pedestal System in Wide Temperature Ranges
,”
Mech. Syst. Signal Process.
,
149
, p.
107317
.
6.
Zhang
,
K.
,
Wu
,
X. C.
,
Bai
,
X. T.
,
Wang
,
Z. N.
,
Zou
,
D. F.
, and
Sun
,
J.
,
2020
, “
Effect of the Lubrication Parameters on the Ceramic Ball Bearing Vibration in Starved Conditions
,”
Appl. Sci.
,
10
(
4
), p.
1237
.
7.
Mohsen
,
N.
, and
Michael
,
D.
,
2011
, “
Dynamic Modeling of Rolling Element Bearings With Surface Contact Defects Using Bond Graphs
,”
ASME J. Tribol.
,
133
(
1
), p.
011102
.
8.
Zhang
,
K.
,
Wang
,
Z. N.
,
Bai
,
X. T.
,
Shi
,
H. T.
, and
Wang
,
Q.
,
2020
, “
Effect of Preload on the Dynamic Characteristics of Ceramic Bearings Based on a Dynamic Thermal Coupling Model
,”
Adv. Mech. Eng.
,
12
(
1
), p.
168781402090385
.
9.
Petersen
,
D.
,
Howard
,
C.
,
Sawalhi
,
N.
,
Ahmadi
,
A. M.
, and
Singh
,
S.
,
2015
, “
Analysis of Bearing Stiffness Variations, Contact Forces and Vibrations in Radially Loaded Double Row Rolling Element Bearings with Raceway Defects
,”
Mech. Syst. Signal Process.
,
20–51
, pp.
139
160
.
10.
Liu
,
J.
,
Shao
,
Y. M.
, and
Zuo
,
M. J.
,
2013
, “
The Effects of the Shape of Localized Defect in Ball Bearings on the Vibration Waveform
,”
P. I. Mech. Eng. K-J. Mul.
,
227
(
3
), pp.
261
274
.
11.
Liu
,
J.
,
Wu
,
H.
, and
Shao
,
Y. M.
,
2017
, “
The Influence of the Raceway Thickness on the Dynamic Performances of a Roller Bearing
,”
J. Strain Anal. Eng.
,
52
(
8
), pp.
528
536
.
12.
Liu
,
J.
,
Zhu
,
W. D.
, and
Shao
,
Y. M.
,
2015
, “
A New Model for the Relationship Between Vibration Characteristics Caused by the Time-Varying Contact Stiffness of a Deep Groove Ball Bearing and Defect Sizes
,”
ASME J. Tribol.
,
137
(
3
), p.
031101
.
13.
Ahmadi
,
A. M.
,
Petersen
,
D.
, and
Howard
,
C.
,
2015
, “
A Nonlinear Dynamic Vibration Model of Defective Bearings–The Importance of Modelling the Finite Size of Rolling Elements
,”
Mech. Syst. Signal Process.
,
52–53
, pp.
309
326
.
14.
Khanam
,
S.
,
Tandon
,
N.
, and
Dutt
,
J. K.
,
2014
, “
Fault Size Estimation in the Outer Race of Ball Bearing Using Discrete Wavelet Transform of the Vibration Signal
,”
Proc. Technol.
,
14
, pp.
12
19
.
15.
Guo
,
Y.
,
Sun
,
S.
,
Wu
,
X.
,
Na
,
J.
, and
Fung
,
R.
,
2018
, “
Experimental Investigation on Double-Impulse Phenomenon of Hybrid Ceramic Ball Bearing With Outer Race Spall
,”
Mech. Syst. Signal Process.
,
113
, pp.
189
198
.
16.
Zhao
,
S.
,
Liang
,
L.
,
Xu
,
G.
,
Wang
,
J.
, and
Zhang
,
W.
,
2013
, “
Quantitative Diagnosis of a Spall-Like Fault of a Rolling Element Bearing by Empirical Mode Decomposition and the Approximate Entropy Method
,”
Mech. Syst. Signal Process.
,
40
(
1
), pp.
154
177
.
17.
Singh
,
M.
, and
Kumar
,
R.
,
2013
, “
Thrust Bearing Groove Race Defect Measurement by Wavelet Decomposition of Pre-Processed Vibration Signal
,”
Measurement.
,
46
(
9
), pp.
3508
3515
.
18.
Jena
,
D.
, and
Panigrahi
,
S.
,
2014
, “
Precise Measurement of Defect Width in Tapered Roller Bearing Using Vibration Signal
,”
Measurement
,
55
, pp.
39
50
.
19.
Moustafa
,
W.
,
Cousinard
,
O.
,
Bolaers
,
F.
,
Sghir
,
K.
, and
Dron
,
J.
,
2016
, “
Low Speed Bearings Fault Detection and Size Estimation Using Instantaneous Angular Speed
,”
J. Vib. Control.
,
22
(
15
), pp.
3413
3425
.
20.
Becker
,
A.
,
Sawalhi
,
N.
, and
Wang
,
W. Y.
,
2016
, “
Size Estimation for Naturally Occurring Bearing Faults Using Synchronous Averaging of Vibration Signals
,”
ASME J. Vib. Acoust.
,
138
(
5
), p.
051015
.
21.
Cui
,
L. L.
,
Wu
,
N.
,
Ma
,
C. Q.
, and
Wang
,
H. Q.
,
2016
, “
Quantitative Fault Analysis of Roller Bearings Based on a Novel Matching Pursuit Method With a New Step-Impulse Dictionary
,”
Mech. Syst. Signal Process.
,
68
, pp.
34
43
.
22.
Cui
,
L. L.
,
Gong
,
X. Y.
,
Zhang
,
J. Y.
, and
Wang
,
H. Q.
,
2016
, “
Double-Dictionary Matching Pursuit for Fault Extent Evaluation of Rolling Bearing Based on the Lempel-Ziv Complexity
,”
J. Sound Vib.
,
385
, pp.
372
388
.
23.
Sawalhi
,
N.
, and
Randall
,
R.
,
2011
, “
Vibration Response of Spalled Rolling Element Bearings: Observations, Simulations and Signal Processing Techniques to Track the Spall Size
,”
Mech. Syst. Signal Process.
,
25
(
3
), pp.
846
870
.
24.
Ahmadi
,
A. M.
,
Howard
,
C. Q.
, and
Petersen
,
D.
,
2016
, “
The Path of Rolling Elements in Defective Bearings: Observations, Analysis and Methods to Estimate Spall Size
,”
J. Sound Vib.
,
366
, pp.
277
292
.
25.
Ismail
,
M. A.
,
Bierig
,
A.
, and
Sawalhi
,
N.
,
2018
, “
Automated Vibration-Based Fault Size Estimation for Ball Bearings Using Savitzky–Golay Differentiators
,”
J. Vib. Control.
,
24
(
18
), pp.
4297
4315
.
26.
Patil
,
S. M.
,
Desavale
,
R. G.
, and
Kumbhar
,
S. G.
,
2021
, “
Roller Element Bearing Fault Size Estimation Using Adaptive Neurofuzzy Inference System
,”
ASCE-ASME J. Risk Uncert. Eng. Sys. Part B
,
7
(
1
), p.
011001
.
27.
Moazen-Ahmadi
,
A.
, and
Howard
,
C. Q.
,
2016
, “
A Defect Size Estimation Method Based on Operational Speed and Path of Rolling Elements in Defective Bearings
,”
J. Sound Vib.
,
385
, pp.
138
148
.
28.
Cui
,
L. L.
,
Huang
,
J. F.
, and
Zhang
,
F. B.
,
2017
, “
Quantitative and Localization Diagnosis of a Defective Ball Bearing Based on Vertical–Horizontal Synchronization Signal Analysis
,”
IEEE Trans. Ind. Elecrton.
,
64
(
11
), pp.
8695
8706
.
29.
Li
,
H. Z.
,
Y
,
H.
, and
K
,
F.
,
2021
, “
Dynamic Modeling of Rolling Bearing Local Fault Considering Time-Varying Excitation
,”
Acta Aeronaut. Astronaut. Sin.
, pp.
1
12
.
You do not currently have access to this content.