Abstract

Contact acoustic nonlinearity (CAN) is generated when oscillating crack faces open and close while a wave passes through it. However, reliably assessing the nonlinear effect due to micro-scale defects is challenging, especially in concrete structures, due to their large size, high attenuation, and low signal-to-noise ratio. However, concrete facilities vibrate due to ambient excitations such as vehicle movement, wind, and water flow. These ambient vibrations can be utilized in amplifying CAN. For example, a vehicle can be moved at a particular velocity over a bridge to amplify a particular natural mode of vibration. This paper illustrates a method of enhancing contact acoustic nonlinearity with the help of ambient vibrations of the structure. A finite element model of a concrete beam with a thin crack is developed. The base of the beam was oscillated at 100 Hz. Meanwhile, a 200 kHz ultrasonic excitation was applied on the beam to monitor its propagation through the crack. The closing and opening of the crack generate the nonlinear behavior of the ultrasonic pulse. A considerable increment of nonlinearity was observed demonstrating the efficacy of the proposed method. The time windows for the nonlinear zone have been identified. A laboratory experiment has been performed to demonstrate the proposed method in reinforced concrete beams. This investigation demonstrates that CAN can be utilized in monitoring concrete structures when ambient vibrations are taken into account.

References

1.
Sun
,
K.
,
Meng
,
G.
,
Li
,
F.
,
Ye
,
L.
, and
Lu
,
Y.
,
2010
, “
Damage Identification in Thick Steel Beam Based on Guided Ultrasonic Waves
,”
J. Intell. Mater. Syst. Struct.
,
21
(
3
), pp.
225
232
.
2.
Jeong-Beom
,
I.
, and
Fu-Kuo
,
C.
,
2004
, “
Detection and Monitoring of Hidden Fatigue Crack Growth Using a Built-In Piezoelectric Sensor/Actuator Network: II. Validation Using Riveted Joints and Repair Patches
,”
Smart Mater. Struct.
,
13
(
3
), pp.
621
630
.
3.
Diamanti
,
K.
,
Soutis
,
C.
, and
Hodgkinson
,
J. M.
,
2007
, “
Piezoelectric Transducer Arrangement for the Inspection of Large Composite Structures
,”
Compos. A Appl. Sci. Manuf.
,
38
(
4
), pp.
1121
1130
.
4.
Dai
,
D.
, and
He
,
Q.
,
2014
, “
Structure Damage Localization With Ultrasonic Guided Waves Based on a Time–Frequency Method
,”
Signal Process.
,
96
(
1
), pp.
21
28
.
5.
Sharma
,
S.
, and
Mukherjee
,
A.
,
2010
, “
Longitudinal Guided Waves for Monitoring Chloride Corrosion in Reinforcing Bars in Concrete
,”
Struct. Health. Monit.
,
9
(
6
), pp.
555
567
.
6.
Sharma
,
S.
, and
Mukherjee
,
A.
,
2015
, “
Monitoring Freshly Poured Concrete Using Ultrasonic Waves Guided Through Reinforcing Bars
,”
Cem. Concr. Compos.
,
55
(
1
), pp.
337
347
.
7.
Sharma
,
S.
, and
Mukherjee
,
A.
,
2015
, “
Ultrasonic Guided Waves for Monitoring Corrosion in Submerged Plates
,”
Struct. Control Health Monit.
,
22
(
1
), pp.
19
35
.
8.
Hong
,
M.
,
Su
,
Z.
,
Lu
,
Y.
,
Sohn
,
H.
, and
Qing
,
X.
,
2015
, “
Locating Fatigue Damage Using Temporal Signal Features of Nonlinear Lamb Waves
,”
Mech. Syst. Signal Process
,
60–61
, pp.
182
197
.
9.
Wang
,
Y.
,
Guan
,
R.
, and
Lu
,
Y.
,
2017
, “
Nonlinear Lamb Waves for Fatigue Damage Identification in FRP-Reinforced Steel Plates
,”
Ultrasonics
,
80
, pp.
87
95
.
10.
Wang
,
R.
,
Wu
,
Q.
,
Yu
,
F.
,
Okabe
,
Y.
, and
Xiong
,
K.
,
2019
, “
Nonlinear Ultrasonic Detection for Evaluating Fatigue Crack in Metal Plate
,”
Struct. Health. Monit.
,
18
(
3
), pp.
869
881
.
11.
Hess
,
P.
,
Lomonosov
,
A. M.
, and
Mayer
,
A. P.
,
2014
, “
Laser-Based Linear and Nonlinear Guided Elastic Waves at Surfaces (2D) and Wedges (1D)
,”
Ultrasonics
,
54
(
1
), pp.
39
55
.
12.
Xu
,
L.
,
Wang
,
K.
,
Su
,
Y.
,
He
,
Y.
,
Yang
,
J.
,
Yuan
,
S.
, and
Su
,
Z.
,
2022
, “
Surface/Sub-Surface Crack-Scattered Nonlinear Rayleigh Waves: A Full Analytical Solution Based on Elastodynamic Reciprocity Theorem
,”
Ultrasonics
,
118
(
1
), p.
106578
.
13.
Da
,
Y.
,
Wang
,
B.
,
Liu
,
D. Z.
, and
Qian
,
Z.
,
2020
, “
An Analytical Approach to Reconstruction of Axisymmetric Defects in Pipelines Using T(0, 1) Guided Waves
,”
Appl. Math. Mech.
,
41
(
10
), pp.
1479
1492
.
14.
Su
,
Z.
,
Zhou
,
C.
,
Hong
,
M.
,
Cheng
,
L.
,
Wang
,
Q.
, and
Qing
,
X.
,
2014
, “
Acousto-Ultrasonics-Based Fatigue Damage Characterization: Linear Versus Nonlinear Signal Features
,”
Mech. Syst. Signal Process
,
45
(
1
), pp.
225
239
.
15.
Hong
,
M.
,
Su
,
Z.
,
Wang
,
Q.
,
Cheng
,
L.
, and
Qing
,
X.
,
2014
, “
Modeling Nonlinearities of Ultrasonic Waves for Fatigue Damage Characterization: Theory, Simulation, and Experimental Validation
,”
Ultrasonics
,
54
(
3
), pp.
770
778
.
16.
Dziedziech
,
K.
,
Pieczonka
,
L.
,
Adamczyk
,
M.
,
Klepka
,
A.
, and
Staszewski
,
W. J.
,
2018
, “
Efficient Swept Sine Chirp Excitation in the Non-Linear Vibro-Acoustic Wave Modulation Technique Used for Damage Detection
,”
Struct. Health. Monit.
,
17
(
3
), pp.
565
576
.
17.
Yang
,
C.
, and
Chen
,
J.
,
2019
, “
Fully Noncontact Nonlinear Ultrasonic Characterization of Thermal Damage in Concrete and Correlation With Microscopic Evidence of Material Cracking
,”
Cem. Concr. Res.
,
123
(
9
), p.
105797
.
18.
Castellano
,
A.
,
Fraddosio
,
A.
,
Piccioni
,
M. D.
, and
Kundu
,
T.
,
2021
, “
Linear and Nonlinear Ultrasonic Techniques for Monitoring Stress-Induced Damages in Concrete
,”
ASME J. Nondestruct. Eval. Diagn. Progn. Eng. Syst.
,
4
(
4
), p.
041001
.
19.
Basu
,
S.
,
Thirumalaiselvi
,
A.
,
Sasmal
,
S.
, and
Kundu
,
T.
,
2021
, “
Nonlinear Ultrasonics-Based Technique for Monitoring Damage Progression in Reinforced Concrete Structures
,”
Ultrasonics
,
115
(
8
), p.
106472
.
20.
Deng
,
M.
,
2003
, “
Analysis of Second-Harmonic Generation of Lamb Modes Using a Modal Analysis Approach
,”
J. Appl. Phys.
,
94
(
6
), pp.
4152
4159
.
21.
Müller
,
M. F.
,
Kim
,
J.-Y.
,
Qu
,
J.
, and
Jacobs
,
L. J.
,
2010
, “
Characteristics of Second Harmonic Generation of Lamb Waves in Nonlinear Elastic Plates
,”
J. Acoust. Soc. Am.
,
127
(
4
), pp.
2141
2152
.
22.
Deng
,
M.
,
1999
, “
Cumulative Second-Harmonic Generation of Lamb-Mode Propagation in a Solid Plate
,”
J. Appl. Phys.
,
85
(
6
), pp.
3051
3058
.
23.
Srivastava
,
A.
, and
Lanza di Scalea
,
V.
,
2009
, “
On the Existence of Antisymmetric or Symmetric Lamb Waves at Nonlinear Higher Harmonics
,”
J. Sound Vib.
,
323
(
3
), pp.
932
943
.
24.
Liu
,
P.
,
Sohn
,
H.
,
Kundu
,
T.
, and
Yang
,
S.
,
2014
, “
Noncontact Detection of Fatigue Cracks by Laser Nonlinear Wave Modulation Spectroscopy (LNWMS)
,”
NDT E Int.
,
66
(
9
), pp.
106
116
.
25.
Lim
,
H. J.
,
Song
,
B.
,
Park
,
B.
, and
Sohn
,
H.
,
2015
, “
Noncontact Fatigue Crack Visualization Using Nonlinear Ultrasonic Modulation
,”
NDT E Int.
,
73
(
7
), pp.
8
14
.
26.
Liu
,
P.
,
Jang
,
J.
,
Yang
,
S.
, and
Sohn
,
H.
,
2018
, “
Fatigue Crack Detection Using Dual Laser Induced Nonlinear Ultrasonic Modulation
,”
Opt. Lasers Eng.
,
110
(
11
), pp.
420
430
.
27.
Kim
,
Y.
,
Lim
,
H. J.
, and
Sohn
,
H.
,
2018
, “
Nonlinear Ultrasonic Modulation Based Failure Warning for Aluminum Plates Subject to Fatigue Loading
,”
Int. J. Fatigue
,
114
(
9
), pp.
130
137
.
28.
Garnier
,
V.
,
Piwakowski
,
B.
,
Abraham
,
O.
,
Villain
,
G.
,
Payan
,
C.
, and
Chaix
,
J. F.
,
2013
, “
Acoustic Techniques for Concrete Evaluation: Improvements, Comparisons and Consistency
,”
Constr. Build. Mater.
,
43
(
6
), pp.
598
613
.
29.
Payan
,
C.
,
Garnier
,
V.
, and
Moysan
,
J.
,
2010
, “
Potential of Nonlinear Ultrasonic Indicators for Nondestructive Testing of Concrete
,”
Adv. Civil Eng.
,
2010
(
7
), pp.
1
8
.
30.
Sohn
,
H.
,
Lim
,
H. J.
,
DeSimio
,
M. P.
,
Brown
,
K.
, and
Derriso
,
M.
,
2014
, “
Nonlinear Ultrasonic Wave Modulation for Online Fatigue Crack Detection
,”
J. Sound Vib.
,
333
(
5
), pp.
1473
1484
.
31.
Li
,
N.
,
Sun
,
J.
,
Jiao
,
J.
,
Wu
,
B.
, and
He
,
C.
,
2016
, “
Quantitative Evaluation of Micro-Cracks Using Nonlinear Ultrasonic Modulation Method
,”
NDT E Int.
,
79
, pp.
63
72
.
32.
Richardson
,
J. M.
,
1979
, “
Harmonic Generation at an Unbonded Interface—I. Planar Interface Between Semi-Infinite Elastic Media
,”
Int. J. Eng. Sci.
,
17
(
1
), pp.
73
85
.
33.
Wu
,
W. Q.
,
Ni
,
Y. F.
,
Qiu
,
G.
, and
Zhang
,
D.
,
1998
, “
Investigation of Contact Acoustic Nonlinearity at Solid Interface
,”
1998 IEEE Ultrasonics Symposium. Proceedings (Cat. No. 98CH36102)
.
34.
Salawu
,
O. S.
,
1997
, “
Detection of Structural Damage Through Changes in Frequency: A Review
,”
Eng. Struct.
,
19
(
9
), pp.
718
723
.
You do not currently have access to this content.