Abstract

In recent years, advanced deep learning techniques have emerged as pivotal tools in enabling the development of robust vision-based solutions for steel surface inspection. This resulted in enhanced inspection accuracy, all while significantly reducing costs in the manufacturing industry. However, the lack of actual steel surface defects datasets currently places a certain constraint on further research into classifying those anomalies. As a consequence, the Convolutional Neural Network (CNN) technique, known for its prowess in image-related tasks, faces certain challenges, especially in classifying less common defects. This work proposes a novel hybrid CNN model with a Support Vector Machine (SVM) classifier at the output layer for surface defects classification. The features extracted from the pre-trained ResNet152 and EfficientB0 CNN algorithms are concatenated and fed to the SVM layer for classification. Extensive experiments on a merged dataset consisting of the publicly available Northeastern University (NEU) dataset and Xsteel surface defect dataset (X-SDD) are carried out and the accuracy and F1 scores are calculated for performance evaluation. The merged dataset contains eleven typical defect types with a total of 2660 defect images. Then, the adopted algorithm is compared with ten fine-tuned deep learning models to evaluate the performance of transfer learning for steel defect detection and identification. The evaluation results show that the deep feature extraction and SVM classification produced better results than the transfer learning. Finally, the proposed classifier model is validated on a newly collected dataset from a Computed Tomography scanner with an accuracy reaching over 96%.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Zhou
,
J.
,
Li
,
P.
,
Zhou
,
Y.
,
Wang
,
B.
,
Zang
,
J.
, and
Meng
,
L.
,
2018
, “
Toward New Generation Intelligent Manufacturing
,”
Engineering
,
4
(
1
), pp.
11
20
.
2.
Kujawińska
,
A.
, and
Vogt
,
K.
,
2015
, “
Human Factors in Visual Quality Control
,”
Manag. Prod. Eng. Rev.
,
6
(
2
), pp.
25
31
.
3.
Amjoud
,
A.
, and
Amrouch
,
M.
,
2023
, “
Object Detection Using Deep Learning, CNNs and Vision Transformers: A Review
,”
IEEE Access
,
11
, pp.
35479
35516
.
4.
Carratù
,
M.
,
Gallo
,
V.
,
Liguori
,
C.
,
Lundgren
,
J.
,
O’Nils
,
M.
, and
Pietrosanto
,
A.
,
2023
, “
Vision-Based System for Measuring the Diameter of Wood Logs
,”
IEEE Open J. Instrum. Meas.
,
2
, pp.
1
12
.
5.
Osipov
,
A.
,
Shumaev
,
V.
,
Ekielski
,
A.
,
Gataullin
,
T.
,
Suvorov
,
S.
,
Mishurov
,
S.
, and
Gataullin
,
S.
,
2022
, “
Identification and Classification of Mechanical Damage During Continuous Harvesting of Root Crops Using Computer Vision Methods
,”
IEEE Access
,
10
, pp.
28885
28894
.
6.
Liu
,
Y.
,
Guo
,
L.
,
Gao
,
H.
,
You
,
Z.
,
Ye
,
Y.
, and
Zhang
,
B.
,
2022
, “
Machine Vision-Based Condition Monitoring and Fault Diagnosis of Machine Tools Using Information From Machined Surface Texture: A Review
,”
Mech. Syst. Signal Process
,
164
, p.
108068
.
7.
Tang
,
B.
,
Chen
,
L.
,
Sun
,
W.
, and
Lin
,
Z. K.
,
2023
, “
Review of Surface Defect Detection of Steel Products Based on Machine Vision
,”
IET Image Proc.
,
17
(
2
), pp.
303
322
.
8.
Wu
,
H.
, and
Lv
,
Q.
,
2021
, “
Hot-Rolled Steel Strip Surface Inspection Based on Transfer Learning Model
,”
J. Sens.
,
2021
, pp.
1
8
.
9.
Liu
,
K.
,
Wang
,
H.
,
Chen
,
H.
,
Qu
,
E.
,
Tian
,
Y.
, and
Sun
,
H.
,
2017
, “
Steel Surface Defect Detection Using a New Haar–Weibull-Variance Model in Unsupervised Manner
,”
IEEE Trans. Instrum. Meas.
,
66
(
10
), pp.
2585
2596
.
10.
Ai
,
Y. H.
, and
Xu
,
K.
,
2013
, “
Surface Detection of Continuous Casting Slabs Based on Curvelet Transform and Kernel Locality Preserving Projections
,”
J. Iron. Steel Res. Int.
,
20
(
5
), pp.
80
86
.
11.
Cheon
,
S.
,
Lee
,
H.
,
Kim
,
C. O.
, and
Lee
,
S. H.
,
2019
, “
Convolutional Neural Network for Wafer Surface Defect Classification and the Detection of Unknown Defect Class
,”
IEEE Trans. Semicond. Manuf.
,
32
(
2
), pp.
163
170
.
12.
Singh
,
S. A.
, and
Desai
,
K. A.
,
2023
, “
Automated Surface Defect Detection Framework Using Machine Vision and Convolutional Neural Networks
,”
J. Intell. Manuf.
,
34
(
4
), pp.
1995
2011
.
13.
Ren
,
R.
,
Hung
,
T.
, and
Tan
,
K. C.
,
2018
, “
A Generic Deep-Learning-Based Approach for Automated Surface Inspection
,”
IEEE Trans. Cybern.
,
48
(
3
), pp.
929
940
.
14.
Iivarinen
,
J
,
2000
, “
Surface Defect Detection With Histogram-Based Texture Features
,”
Proceedings of the Intelligent Robots and Computer Vision XIX: Algorithms, Techniques, and Active Vision
,
Boston, MA
,
Nov. 5–8
, Vol. 4197, pp.
140
145
.
15.
Fajardo
,
J. I.
,
Paltán
,
C. A.
,
López
,
L. M.
, and
Carrasquero
,
E. J.
,
2022
, “
Textural Analysis by Means of a Gray Level Co-Occurrence Matrix Method. Case: Corrosion in Steam Piping Systems
,”
Mater. Today: Proc.
,
49
(
Part1
), pp.
149
154
.
16.
Guo
,
X.
,
Gong
,
K.
, and
Lu
,
C.
,
2015
, “
Low-Resolution Steel Surface Defects Classification Network Based on Autocorrelation Semantic Enhancement
,”
Coatings
,
13
(
12
), pp.
149
154
.
17.
Zhao
,
S.
,
Zhong
,
R. Y.
,
Wang
,
J.
,
Xu
,
C.
, and
Zhang
,
J.
,
2023
, “
Unsupervised Fabric Defects Detection Based on Spatial Domain Saliency and Features Clustering
,”
Comput. Ind. Eng.
,
185
, p.
109681
.
18.
Medina
,
R.
,
Gayubo
,
F.
,
González-Rodrigo
,
L. M.
,
Olmedo
,
D.
,
Gómez-García-Bermejo
,
J.
,
Zalama
,
E.
, and
Perán
,
J. R.
,
2011
, “
Automated Visual Classification of Frequent Defects in Flat Steel Coils
,”
Int. J. Adv. Manuf. Technol.
,
57
(
9–12
), pp.
1087
1097
.
19.
Li
,
L.
,
Ren
,
T.
, and
Feng
,
M.
,
2023
, “
Research on Surface Defect Identification of Steel Balls Based on Improved K-CV Parameter Optimization Support Vector Machine
,”
Adv. Mech. Eng.
,
15
(
12
), pp.
1
11
.
20.
Guan
,
S.
,
Lei
,
M.
, and
Lu
,
H.
,
2020
, “
A Steel Surface Defect Recognition Algorithm Based on Improved Deep Learning Network Model Using Feature Visualization and Quality Evaluation
,”
IEEE Access
,
8
, pp.
49885
49895
.
21.
Liu
,
N.
,
Wan
,
L.
,
Zhang
,
Y.
,
Zhou
,
T.
,
Huo
,
H.
, and
Fang
,
T.
,
2018
, “
Exploiting Convolutional Neural Networks With Deeply Local Description for Remote Sensing Image Classification
,”
IEEE Access
,
6
, pp.
11215
11228
.
22.
Xing
,
J.
, and
Jia
,
M.
,
2021
, “
A Convolutional Neural Network-Based Method for Workpiece Surface Defect Detection
,”
Measurement
,
176
, p.
109185
.
23.
Arshad
,
S. R.
,
Obaid
,
I.
,
Gull
,
R.
, and
Shahzad
,
M. K.
,
2022
, “
Steel Defect Classification Using Machine Learning
,”
Proceedings of the 2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM)
,
Seoul, South Korea
,
Jan. 3–5
, pp.
1
6
.
24.
Liu
,
Y.
,
Geng
,
J.
,
Su
,
Z.
,
Zhang
,
W.
, and
Li
,
J.
,
2019
, “
Real-Time Classification of Steel Strip Surface Defects Based on Deep CNNs
,”
Proceedings of 2018 Chinese Intelligent Systems Conference
,
Y.
Jia
,
J.
Du
, and
W.
Zhang
, eds.,
Springer
,
Singapore, Singapore
, pp.
257
266
.
25.
Zhang
,
L.
,
Bian
,
Y.
,
Jiang
,
P.
, and
Zhang
,
F.
,
2023
, “
A Transfer Residual Neural Network Based on ResNet-50 for Detection of Steel Surface Defects
,”
Appl. Sci.
,
13
(
9
), p.
5260
.
26.
Zhang
,
J.
,
Xin Kang
,
H. N.
, and
Ren
,
F.
,
2021
, “
Surface Defect Detection of Steel Strips Based on Classification Priority YOLOv3-Dense Network
,”
Ironmak. Steelmak.
,
48
(
5
), pp.
547
558
.
27.
Boudiaf
,
A.
,
Benlahmidi
,
S.
,
Harrar
,
K.
, and
Zaghdoudi
,
R.
,
2022
, “
Classification of Surface Defects on Steel Strip Images Using Convolution Neural Network and Support Vector Machine
,”
J Fail. Anal. and Preven.
,
22
(
2
), pp.
531
541
.
28.
Liu
,
W.
,
Zhang
,
J.
,
Su
,
Z.
,
Zhou
,
Z.
, and
Liu
,
L.
,
2021
, “
Binary Neural Network for Automated Visual Surface Defect Detection
,”
Sensors (Basel)
,
21
(
20
), p.
6868
.
29.
Li
,
Y.
,
Huang
,
H.
,
Xie
,
Q.
,
Yao
,
L.
, and
Chen
,
Q.
,
2018
, “
Research on a Surface Defect Detection Algorithm Based on MobileNet-SSD
,”
Appl. Sci.
,
8
(
9
), p.
1678
.
30.
He
,
Y.
,
Song
,
K.
,
Meng
,
Q.
, and
Yan
,
Y.
,
2020
, “
An End-to-End Steel Surface Defect Detection Approach via Fusing Multiple Hierarchical Features
,”
IEEE Trans. Instrum. Meas.
,
69
(
4
), pp.
1493
1504
.
31.
Guo
,
X.
,
Gong
,
K.
, and
Lu
,
C.
,
2021
, “
X-SDD: A New Benchmark for Hot Rolled Steel Strip Surface Defects Detection
,”
Symmetry
,
13
(
4
), p.
706
.
32.
Szegedy
,
C.
,
Liu
,
W.
,
Jia
,
Y.
,
Sermanet
,
P.
,
Reed
,
S.
,
Anguelov
,
D.
,
Erhan
,
D.
,
Vanhoucke
,
V.
, and
Rabinovich
,
A.
,
2015
, “
Going Deeper with Convolutions
,”
Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Boston, MA
,
June 7–12
, pp.
1
9
.
33.
Simonyan
,
K.
, and
Zisserman
,
A.
,
2014
, “Very Deep Convolutional Networks for Large-Scale Image Recognition.” http://arxiv.org/abs/1409.1556.
34.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2016
, “
Deep Residual Learning for Image Recognition
,”
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Las Vegas, NV
,
June 27–30
, pp.
770
778
.
35.
Howard
,
A. G.
,
Zhu
,
M.
,
Chen
,
B.
,
Kalenichenko
,
D.
,
Wang
,
W.
,
Weyand
,
T.
,
Andreetto
,
M.
, and
Adam
,
H.
,
2017
, “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” CoRR.
36.
Huang
,
G.
,
Liu
,
Z.
, and
Weinberger
,
K. Q.
,
2016
, “Densely Connected Convolutional Networks,” CoRR. .
37.
Tan
,
M.
, and
Le
,
Q. V.
,
2020
, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.” .
You do not currently have access to this content.