Critical experiments are used for validation of reactor physics codes, in particular, to determine the biases and uncertainties in code predictions. To reflect all conditions present in operating reactors, plans for such experiments often require tests involving irradiated fuel. However, it is impractical to use actual irradiated fuel in critical experiments due to hazards associated with handling and transporting the fuel. To overcome this limitation, a simulated irradiated fuel, whose composition mimics the neutronic behavior of the truly irradiated fuel (TRUFUEL), can be used in a critical experiment. Here, we present an optimization method in which the composition of simulated irradiated fuel for the Canadian supercritical water-cooled reactor (SCWR) concept at midburnup (21.3  MWdkg1 (IHM)) is varied until the integral indices ck, E, and G are maximized between the true and simulated irradiated fuel. In the optimization, the simulated irradiated fuel composition is simplified so that only the major actinides (U233, Pu238-242, and Th232) remain, while the absorbing fission products are replaced by dysprosia and zirconia. In this method, the integral indices ck, E, and G are maximized while the buckling, k and the relative ring-averaged pin fission powers are constrained, within a certain tolerance, to their reference lattice values. Using this method, maximized integral similarity indices of ck=0.967, E=0.992, and G=0.891 have been obtained.

References

1.
Radiation Safety Information Computational Center
,
2013
.https://rsicc.ornl.gov.
2.
Rearden
,
B. T.
,
Petrie
,
L. M.
,
Jessee
,
M. A.
, and
Williams
,
M. L.
,
2011
, “
SAMS: Sensitivity Analysis Module for SCALE
,”
Oak Ridge National Laboratory
, .
3.
Oblow
,
E.
,
1976
, “
Sensitivity Theory From a Differential Viewpoint
,”
Nucl. Sci. Eng.
,
59
(
2
), p. 
187
. 0029-5639
4.
Gandini
,
A.
,
1994
, “
A Generalized Perturbation Method for Bilinear Functionals of the Real and Adjoint Neutron Fluxes
,”
J. Nucl. Energy
,
21
(
10
), p. 
7
. 0022-3107
5.
Jessee
,
M.
, and
DeHart
,
M.
,
2011
, “
NEWT: A New Transport Algorithm for Two-Dimensional Discrete-Ordinates Analysis in Non-Orthogonal Geometries
,”
Oak Ridge National Laboratory
, .
6.
Weisbin
,
C. R.
,
Marable
,
J. H.
,
Lucius
,
J. L.
,
Oblow
,
E. M.
,
Mynatt
,
F. R.
,
Peelle
,
R. W.
, and
Perey
,
F. G.
,
1976
, “
Application of FORSS Sensitivity and Uncertainty Methodology to Fast Reactor Benchmark Analysis
,”
Union Carbide Corp., Oak Ridge National Laboratory
, .
7.
Williams
,
M.
,
Broadhead
,
B.
, and
Parks
,
C.
,
2001
, “
Eigenvalue Sensitivity Theory for Resonance-Shielded Cross Sections
,”
Nucl. Sci. Eng.
,
138
(
2
), pp. 
177
191
. 0029-563910.13182/NSE00-56
8.
Williams
,
M. L.
,
1986
, “Perturbation Theory for Reactor Analysis,”
CRC Handbook of Nuclear Reactors Calculations
, Vol. 
3
,
CRC Press
,
West Palm Beach, FL
, pp. 
63
188
.
9.
Dunn
,
M.
,
2000
, “
PUFF-III: A Code for Processing ENDF Uncertainty Data Into Multigroup Covariance Matrices
,”
Oak Ridge National Laboratory
, .
10.
Rearden
,
B. T.
, and
Jessee
,
M.
, June
2011
, “
TSUNAMI Utility Modules
,”
Oak Ridge National Laboratory
, .
11.
Broadhead
,
B.
,
Rearden
,
B.
,
Hopper
,
C.
,
Wagschal
,
J.
, and
Parks
,
C.
,
2004
, “
Sensitivity- and Uncertainty-Based Criticality Safety Validation Techniques
,”
Nucl. Sci. Eng.
,
146
(
3
), pp. 
340
366
. 0029-563910.13182/NSE03-2
12.
Golouglu
,
S.
,
Hopper
,
C. M.
, and
Rearden
,
B. T.
,
2003
, “
Extended Interpretation of Sensitivity Data for Benchmark Areas of Applicability
,”
Proceedings of ANS 2003 Annual Meeting, the Nuclear Technology Expansion: Unlimited Opportunities
,
San Diego, CA
,
June 1–5
. 0003-018X
13.
Nava-Dominquez
,
A.
,
Onder
,
E.
,
Pencer
,
J.
, and
Watts
,
D.
,
2013
, “
Canadian SCWR Bundle Optimization for the new Fuel Channel Design
,”
The 6th International Symposium on Superciritcal Water-Cooled Reactors
,
Shenzhen, Guangdong, China
, Paper No. 22.
14.
Pencer
,
J.
,
Watts
,
D.
,
Colton
,
A.
,
Wang
,
X.
,
Blomeley
,
L.
,
Anghel
,
V.
, and
Yue
,
S.
,
2013
, “
Core Neutronics for the Canadian SCWR Conceptual Design
,”
The 6th International Symposium on Superciritcal Water-Cooled Reactors
,
Shenzhen, Guangdong, China
, Paper No. 21.
15.
Pencer
,
J.
,
McDonald
,
M.
, and
Anghel
,
V.
,
2014
, “
Parameters for Transient Response Modeling for the Canadian SCWR
,”
The 19th Pacific Basin Nuclear Conference
,
Vancouver, BC, Canada
, Paper No. 403.
16.
Sharpe
,
J. R.
,
Salaun
,
F.
,
Hummel
,
D.
,
Moghrabi
,
A.
,
Nowak
,
M.
,
Pencer
,
J.
,
Novog
,
D.
, and
Buijs
,
A.
,
2015
, “
A Benchmark Comparison of the Canadian Supercritical Water-Cooled Reactor (SCWR) 64-Element Fuel Lattice Cell Parameters Using Various Computer Codes
,”
35th Annual Conference of the Canadian Nuclear Society
,
Saint John, NB, Canada
, Paper No. 33.
17.
Greene
,
N.
,
2011
, “
BONAMI, Resonance Self-Shielding by the Bondarenko Method
,”
Oak Ridge National Laboratory
, .
18.
Petrie
,
L.
, and
Rearden
,
B.
,
2011
, “
MCDANCOFF Data Guide
,”
Oak Ridge National Laboratory
, .
19.
Chapot
,
J.
,
Silva
,
F.
, and
Schirru
,
M.
,
1999
, “
A new Approach to the use of Genetic Algorithms to Solve the Pressurized Water Reactors Fuel Management Optimization Problem
,”
Ann. Nucl. Energy
,
26
(
7
), pp. 
641
655
. 0306-454910.1016/S0306-4549(98)00078-4
20.
The Dakota Project
,
2014
. “
Sandia National Laboratories
,” http://dakota.sandia.gov.
You do not currently have access to this content.