Abstract

Supercritical fluids (SCF) find potential applications in the upcoming energy systems due to various advantages associated with them. One of such applications is nuclear reactor where supercritical water and carbon-dioxide, both are proposed as the coolants in advanced reactor designs. Higher efficiency, simplified systems, lower operational costs are some of the advantages which propels the research fraternity to employ these fluids in application. However, there are also some challenges associated with the use of these fluids. Heat transfer behavior of these fluids is one among them. As SCF undergo tremendous changes in thermophysical properties across pseudo-critical temperature, heat transfer may get affected. It may get enhanced, deteriorated or remain unaltered. Various studies, experimental and analytical, have been carried out in the past using SCF to evaluate their heat transfer behavior. Various heat transfer correlations have been proposed by researchers catering to different operating range of parameters. Also, studies have been dedicated by researchers to investigate fluid-to-fluid scaling of SCF based on which scaling laws were proposed by them. This way prototypic fluid behavior can be predicted if the model fluid conditions are known. This paper presents a latest review of the scaling laws and heat transfer correlations applicable to SC fluids. Illustrations have also been presented considering reference experimental data from literature to get a feel about how these scaling laws fare among themselves. Various heat transfer correlations have been compared and important observations have also been discussed in this article.

References

1.
Kalnin
,
I. M.
,
Pustovalov
,
S. B.
, and
Krivtsov
,
D. V.
,
2013
, “
CO2 Heat Pump Technology for Heating Supply System (Presentation)
,” European Heat Pump Summit, Nurnberg, Germany, Oct.
15
26
.
2.
Wan
,
Y.
,
Xu
,
T.
, and
Pruess
,
K.
,
2011
, “
Impact of Fluid-Rock Interactions on Enhanced Geothermal Systems With CO2 as Heat Transmission Fluid
,”
Proceedings of the 36th Workshop on Geothermal Reservoir Engineering
,
Stanford University
, Stanford, CA, Jan. 31–Feb. 2, Paper No. SGP-TR-191.
3.
Chapman
,
D. J.
, and
Arias
,
D. A.
,
2009
, “
An Assessment of the Supercritical Carbon Dioxide Cycle for Use in a Solar Parabolic Trough Power Plant
,”
Proceedings of SCCO2 Power Cycle Symposium, Troy, NY, Apr. 29–30, No. 09SC1-4.
4.
Lorentzen
,
G.
,
1994
, “
Revival of Carbon Dioxide as a Refrigerant
,”
Int. J. Refrig.
,
17
(
5
), pp.
292
301
.10.1016/0140-7007(94)90059-0
5.
IAEA,
2014
, “
Heat Transfer Behaviour and Thermohydraulics Code Testing for Supercritical Water Cooled Reactors (SCWRs)
,” Final Report of Coordinated Research Project, IAEA TECDOC Series, Vienna, Austria, Report No. IAEA-TECDOC-1746.
6.
IAEA,
2020
, “
Understanding and Prediction of Thermohydraulic Phenomena Relevant to Supercritical Water Cooled Reactors (SCWRs)
,” Final Report of Coordinated Research Project, IAEA TECDOC Series, Vienna, Austria, Report No. IAEA-TECDOC-1900.
7.
Lemmon, E. W., McLinden, M. O. and Friend, D. G., 2017 “Thermophysical Properties of Fluid Systems,” NIST Chemistry WebBook, NIST Standard Reference Database, P. J. Linstrom and W. G. Mallard, eds., National Institute of Standards and Technology, Gaithersburg, MD, accessed July 11,
2017
, https://webbook.nist.gov/chemistry/fluid/
8.
Jackson
,
J. D.
, and
Hall
,
W. B.
,
1979
a, “
Forced Convection Heat Transfer to Fluids at Supercritical Pressure, Chapter
,”
Turbulent Forced Convection in Channels and Bundles: Theory and Applications to Heat Exchangers and Nuclear Reactors
, Vol.
2
,
S.
Kakaç
, and
D. B.
Spalding
, (eds.),
Hemisphere Publishing Corp
,
New York
, pp.
563
612
.
9.
Pioro
,
I. L.
, and
Duffey
,
R. B.
,
2007
,
Heat Transfer and Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications
,
ASME Press
,
New York
, p.
334
.
10.
Zwolinski
,
S.
,
Anderson
,
M.
,
Corradini
,
M.
, and
Licht
,
J.
,
2011
, “
Evaluation of Fluid-to-Fluid Scaling Method for Water and Carbon Dioxide at Supercritical Pressure
,”
Fifth International Symposium on Supercritical Water-Cooled Reactors (ISSCWR5)
, Vancouver, BC, Canada, Mar. 13–16, pp.
1
11
.
11.
Jackson
,
J. D.
,
2008
, “
A Semi-Empirical Model of Turbulent Convective Heat Transfer to Fluids at Supercritical Pressure
,”
16th International Conference on Nuclear Engineering (ICONE-16)
,
American Society of Mechanical Engineers
, Orlando, FL, May,
11
15
, pp.
12.
Cheng
,
X.
,
Liu
,
X. J.
, and
Gu
,
H. Y.
,
2011
, “
Fluid-to-Fluid Scaling of Heat Transfer in Circular Tubes Cooled With Supercritical Fluids
,”
Nucl. Eng. Des.
,
241
(
2
), pp.
498
508
.10.1016/j.nucengdes.2010.11.017
13.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1930
,
Publications of Engineering
, Vol.
2
,
University of California
,
Berkeley
, CA, p.
443
.
14.
Zahlan
,
H.
,
Groeneveld
,
D. C.
, and
Tavoularis
,
S.
,
2014
, “
Fluid-to-Fluid Scaling for Convective Heat Transfer in Tubes at Supercritical and High Subcritical Pressures
,”
Int. J. Heat Mass Transfer
,
73
, pp.
274
283
.10.1016/j.ijheatmasstransfer.2014.02.018
15.
Zhang
,
S. Y.
,
2015
, “
Experimental and Fluid Scaling Studies on the Convective Heat Transfer of Supercritical Fluid
,” Ph.D. thesis, Shanghai Jiao Tong University, Shanghai, China (in Chinese).
16.
Chen
,
J.
,
Tian
,
X. W.
,
Su
,
G.
,
Zhang
,
D. L.
,
Wu
,
Y.
, and
Qiu
,
S. Z.
,
2016
, “
Scaling Analysis for Convective Heat Transfer in Tube at Supercritical Pressure
,”
At. Energy Sci. Technol.
,
50
(
2
), pp.
267
272
(in Chinese).10.7538/yzk.2016.50.02.0267
17.
Zhou
,
Q. T.
,
1983
, “
Influences of Buoyancy on Heat Transfer to Supercritical Pressure Water in Vertical Tubes
,”
J. Eng. Thermophys.
,
4
, pp.
165
172
(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-GCRB198302010.htm
18.
Wang
,
H.
,
Lu
,
D.
, and
Wang
,
Y.
,
2018
, “
Discussion on the Fluid-to-Fluid Scaling of Heat Transfer at Supercritical Pressures
,”
Ann. Nucl. Energy
,
121
, pp.
108
117
.10.1016/j.anucene.2018.07.024
19.
Yamagata
,
K.
,
Nishikawa
,
K.
,
Hasegawa
,
S.
,
Fujii
,
T.
, and
Yoshida
,
S.
,
1972
, “
Forced Convective Heat Transfer to Supercritical Water Flowing in Tubes
,”
Int. J. Heat Mass Transfer
,
15
(
12
), pp.
2575
2593
.10.1016/0017-9310(72)90148-2
20.
Yu
,
G.
,
Jiang
,
C.
,
Wang
,
L.
,
Su
,
G. H.
, and
Qiu
,
S. Z.
,
2018
, “
A New Method on Fluid-to-Fluid Scaling for Heat Transfer in Tubes at Supercritical Pressures
,”
Int. J. Heat Mass Transfer
,
126
, pp.
809
822
.10.1016/j.ijheatmasstransfer.2018.05.032
21.
Gupta
,
S.
,
Saltanov
,
E.
,
Mokry
,
S. J.
,
Pioro
,
I.
,
Trevani
,
L.
, and
McGillivray
,
D.
,
2013
, “
Developing Empirical Heat-Transfer Correlations for Supercritical CO2 Flowing in Vertical Bare Tubes
,”
Nucl. Eng. Des.
,
261
, pp.
116
131
.10.1016/j.nucengdes.2013.02.048
22.
Saltanov
,
E.
,
2015
, “
Specifics of Forced-Convective Heat Transfer to Supercritical CO2 Flowing Upward in Vertical Bare Tubes
,” Ph.D thesis, UOIT, Oshawa, ON, Canada, p.
273
.
23.
Petukhov
,
B. S.
,
1970
, “
Heat Transfer and Friction in Turbulent Pipe Flow With Variable Physical Properties
,”
Adv. Heat Transfer
,
6
, pp.
503
564
.10.1016/S0065-2717(08)70153-9
24.
Gnielinski
,
V.
,
1976
, “
New Equation for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. J. Chem. Eng.
,
16
(
2
), pp.
359
368
.
25.
McAdams
,
W. H.
,
1942
,
Heat Transmission
, 2nd ed.,
McGraw-Hill
,
New York
, p.
459
.
26.
Bringer
,
R. P.
, and
Smith
,
J. M.
,
1957
, “
Heat Transfer in the Critical Region
,”
AIChE J.
,
3
(
1
), pp.
49
55
.10.1002/aic.690030110
27.
Miropol'skii
,
Z. L.
, and
Shitsman
,
M. E.
,
1957
, “
Heat Transfer to Water and Steam at Variable Specific Heat (at Near-Critical Region), (in Russian)
,”
J. Tech. Phys.
,
XXVII
(
10
), pp.
2359
2372
.
28.
Miropol'skii
,
Z. L.
, and
Shitsman
,
M. E.
,
1958
, “
About Calculation Methods of Heat Transfer to Water and Steam at Near-Critical Region
,”
Sov. Energy Technol.
,
1
, pp.
8
11
(in Russian).
29.
Domin
,
G.
,
1963
, “
Wärmeübergang in kritischen und überkritischenBereichen von Wasser in Rohren
,”
Brennstoff-Warme-Fraft (BWK)
,
15
(
11
), pp.
527
532
.
30.
Gorban'
,
L. M.
,
Pomet'ko
,
R. S.
, and
Khryaschev
,
O. A.
,
1990
,
Modeling of Water Heat Transfer With Freon of Supercritical Pressure
,
Institute of Physics and Power Engineering
,
Obninsk, Russia
, p.
1766
(in Russian).
31.
Griem
,
H.
,
1996
, “
A New Procedure for the Prediction of Forced Convection Heat Transfer at Near-and Supercritical Pressure
,”
Heat Mass Transfer
,
31
(
5
), pp.
301
305
.10.1007/BF02184042
32.
Kitoh
,
K.
,
Koshizuka
,
S.
, and
Oka
,
Y.
,
1999
, “
Refinement of Transient Criteria and Safety Analysis for a High Temperature Reactor Cooled by Supercritical Water
,”
Proceedings of the Seventh International Conference on Nuclear Engineering (ICONE-7)
, Tokyo, Japan, April 19–23, Paper No. 7234.
33.
Petukhov
,
B. S.
, and
Kirillov
,
V. V.
,
1958
, “
About Heat Transfer at Turbulent Fluid Flow in Tubes
,”
Therm. Eng. (TenjioaHepreriiKa
),
4
, pp.
63
68
(in Russian).
34.
Petukhov
,
B. S.
,
Krasnoshchekov
,
E. A.
, and
Protopopov
,
V. S.
,
1961
, “
An Investigation of Heat Transfer to Fluids Flowing in Pipes Under Supercritical Conditions
,”
International Heat Transfer Conference
, pp.
569
578
. ASME, Part III,
University of Colorado
, Boulder, CO, Jan. 8–12, Paper No. 67.
35.
Krasnoshchekov
,
E. A.
,
Protopopov
,
V. S.
,
Van
,
F.
, and
Kuraeva
,
I. V.
,
1967
, “
Experimental Investigation of Heat Transfer for Carbon Dioxide in the Supercritical Region
,”
Proceedings of the Second All-Soviet Union Conference on Heat and Mass Transfer
, Minsk, Belarus, pp.
26
35
.
36.
Grass
,
G.
,
Herkenrath
,
H.
, and
Hufschmidt
,
W.
,
1971
, “
Anwendung Des Prandtlschen Grenzschichtmodells Auf Den Waermeuebergang an Fluessigkeiten Mitstark Temperaturabhaengigen Stoffeigenschaften Bei Erzwungener Stroemung
,”
Waerme Stoffuebertragung
,
4
, pp.
113
119
(in German).10.1007/BF01929761
37.
Petukhov
,
B. S.
,
Kurganov
,
V. A.
, and
Ankudinov
,
V. B.
,
1983
, “
Heat Transfer and Flow Resistance in the Turbulent Pipe Flow of a Fluid With Near-Critical State Parameters
,”
High Temp. Sci.
,
21
, pp.
81
89
.https://ui.adsabs.harvard.edu/abs/1983TepVT..21...92P/abstract
38.
Razumovskiy
,
V. G.
,
Ornatskiy
,
A. P.
, and
Mayevskiy
,
Y. M.
,
1990
, “
Local Heat Transfer and Hydraulic Behavior in Turbulent Channel Flow of Water at Supercritical Pressure
,”
Heat Transfer-Sov. Res.
,
22
(
1
), pp.
91
102
.https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=22009444
39.
Bae
,
Y. Y.
, and
Kim
,
H. Y.
,
2009
, “
Convective Heat Transfer to CO2 at a Supercritical Pressure Flowing Vertically in Tubes and an Annular Channel
,”
Exp. Therm. Fluid Sci.
,
33
(
2
), pp.
329
339
.10.1016/j.expthermflusci.2008.10.002
40.
Bishop
,
A. A.
,
Sandberg
,
R. O.
, and
Tong
,
L. S.
,
1964
, “
Forced Convection Heat Transfer to Water at Near-Critical Temperatures and Supercritical Pressures
,” Westinghouse Electric Corporation, Atomic Power Division, Pittsburgh PA, Report No. WCAP-2056.
41.
Swenson
,
H. S.
,
Carver
,
J. R.
, and
Kakarala
,
C. R.
,
1965
, “
Heat Transfer to Supercritical Water in Smooth-Bore Tubes
,”
ASME J. Heat Transfer
,
87
(
4
), pp.
477
484
.10.1115/1.3689139
42.
Ornatsky
,
A. P.
,
Glushchenko
,
L. P.
, and
Siomin
,
E. T.
,
1970
, “
The Research of Temperature Conditions of Small Diameter Parallel Tubes Cooled by Water Under Supercritical Pressures
,”
Proceedings of the Fourth International Heat Transfer Conference
, Paris-Versailles, France, Aug. 31–Sept. 5.
43.
Jackson
,
J. D.
, and
Fewster
,
J.
,
1975
, “
Forced Convection Data for Supercritical Pressure Fluids
,” Simon Engineering Laboratory, University of Manchester, Manchester, UK, Report No. HTFS 21540.
44.
Jackson
,
J.
, and
Hall
,
W.
,
1979
, “
Influences of Buoyancy on Heat Transfer to Fluids Flowing in Vertical Tubes Under Turbulent Conditions
,”
Chapter in Turbulent Forced Convection in Channels and Bundles: Theory and Applications to Heat Exchangers and Nuclear Reactors
, Vol.
2
,
S.
Kakaç
, and
D. B.
Spalding
, (eds.),
Hemisphere Publishing Corp
,
New York
, pp.
613
640
.
45.
Jackson
,
J. D.
,
2002
, “
Consideration of the Heat Transfer Properties of Supercritical Pressure Water in Connection With the Cooling of Advanced Nuclear Reactors
,”
Proceedings of the 13th Pacific Basin Nuclear Conference
, Shenzhen City, China, Oct. 21–25, p.
240
.
46.
Yu
,
J.
,
Jia
,
B.
,
Wu
,
D.
, and
Wang
,
D.
,
2009
, “
Optimization of Heat Transfer Coefficient Correlation at Supercritical Pressure Using Genetic Algorithms
,”
Heat Mass Transfer
,
45
(
6
), pp.
757
766
.10.1007/s00231-008-0475-4
47.
Watts
,
M. J.
, and
Chou
,
C. T.
,
1982
, “
Mixed Convection Heat Transfer to Supercritical Pressure Water
,”
Proceedings of Seventh International Heat Transfer Conference (IHTC)
, Munich, Germany, Sep. 6–10, pp.
495
500
.
48.
Liao
,
S. M.
, and
Zhao
,
T. S.
,
2002
, “
An Experimental Investigation of Convection Heat Transfer to Supercritical Carbon Dioxide in Miniature Tubes
,”
Int. J. Heat Mass Transfer
,
45
(
25
), pp.
5025
5034
.10.1016/S0017-9310(02)00206-5
49.
Xu
,
F.
,
Guo
,
L.
,
Mao
,
Y.
, and
Jiang
,
X.
,
2005
, “
Experimental Investigation to the Heat Transfer Characteristics of Water in Vertical Pipes Under Supercritical Pressure
,”
J. Xi'an Jiaotong Univ.
,
39
(
5
), pp.
468
471
.https://www.scopus.com/record/display.uri?eid=2-s2.0-21144456724&origin=inward
50.
Kuang
,
B.
,
Zhang
,
Y.
, and
Cheng
,
X.
,
2008
, “
A Wide-Ranged Heat Transfer Correlation of Water at Supercritical Pressures in Vertical Upward Ducts
,”
China-Canada Joint Workshop on SCWR (CCSC 2008)
, Shanghai, China, Apr. 25–26.
51.
Kuang
,
B.
,
Zhang
,
Y.
, and
Cheng
,
X.
,
2008
, “
A New, Wide-Ranged Heat Transfer Correlation of Water at Supercritical Pressures in Vertical Upward Ducts
,” NUTHOS–7, Seoul, South Korea, Oct. 5–9.
52.
Zhu
,
X.
,
Bi
,
Q.
,
Yang
,
D.
, and
Chen
,
T.
,
2009
, “
An Investigation on Heat Transfer Characteristics of Different Pressure Steam-Water in Vertical Upward Tube
,”
Nucl. Eng. Des.
,
239
(
2
), pp.
381
388
.10.1016/j.nucengdes.2008.10.026
53.
Cheng
,
X.
,
Yang
,
Y. H.
, and
Huang
,
S. F.
,
2009
, “
A Simplified Method for Heat Transfer Prediction of Supercritical Fluids in Circular Tubes
,”
Ann. Nucl. Energy
,
36
(
8
), pp.
1120
1128
.10.1016/j.anucene.2009.04.016
54.
Gupta
,
S.
,
Farah
,
A.
,
King
,
K.
,
Mokry
,
S.
, and
Pioro
,
I.
,
2010
, “
Developing New Heat-Transfer Correlation for Supercritical-Water Flow in Vertical Bare Tubes
,”
ASME
Paper No. ICONE18-30024
.10.1115/ICONE18-30024
55.
Bae
,
Y. Y.
,
Kim
,
H. Y.
, and
Kang
,
D. J.
,
2010
, “
Forced and Mixed Convection Heat Transfer to Supercritical CO2 Vertically Flowing in a Uniformly-Heated Circular Tube
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1295
1308
.10.1016/j.expthermflusci.2010.06.001
56.
Kim
,
D. E.
, and
Kim
,
M. H.
,
2010
, “
Experimental Study of the Effects of Flow Acceleration and Buoyancy on Heat Transfer in a Supercritical Fluid Flow in a Circular Tube
,”
Nucl. Eng. Des.
,
240
(
10
), pp.
3336
3349
.10.1016/j.nucengdes.2010.07.002
57.
Kim
,
D. E.
, and
Kim
,
M. H.
,
2011
, “
Experimental Investigation of Heat Transfer in Vertical Upward and Downward Supercritical CO2 Flow in a Circular Tube
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
176
191
.10.1016/j.ijheatfluidflow.2010.09.001
58.
Mokry
,
S.
, and
Pioro
,
I.
,
2011
, “
Heat Transfer Correlation for Supercritical Carbon Dioxide Flowing Upward in a Vertical Bare Tube
,”
Proceedings of the Supercritical CO2 Power Cycle Symposium
, Boulder, CO, May 24–25, p.
10
.
59.
Mokry
,
S.
,
Pioro
,
I.
,
Farah
,
A.
,
King
,
K.
,
Gupta
,
S.
,
Peiman
,
W.
, and
Kirillov
,
P.
,
2011
, “
Development of Supercritical Water Heat-Transfer Correlation for Vertical Bare Tubes
,”
Nucl. Eng. Des.
,
241
(
4
), pp.
1126
1136
.10.1016/j.nucengdes.2010.06.012
60.
Gupta
,
S.
,
Mokry
,
S.
, and
Pioro
,
I.
,
2011
, “
Developing a Heat-Transfer Correlation for Supercritical-Water Flowing in Vertical Tubes and Its Application in SCWR
,”
Proceedings of 19th International Conference on Nuclear Engineering (ICONE-19)
, Makuhari, Japan, May 16–19, Paper No. 43503.
61.
Bae
,
Y. Y.
,
2011
, “
Mixed Convection Heat Transfer to Carbon Dioxide Flowing Upward and Downward in a Vertical Tube and an Annular Channel
,”
Nucl. Eng. Des.
,
241
(
8
), pp.
3164
3177
.10.1016/j.nucengdes.2011.06.016
62.
Preda
,
T.
,
Saltanov
,
E.
,
Pioro
,
I.
, and
Gabriel
,
K.
,
2012
, “
Development of a Heat Transfer Correlation for Supercritical CO2 Based on Multiple Data Sets
,”
Proceedings of the 20th International Conference on Nuclear Engineering (ICONE-20)
, pp.
211
217
. Anaheim, CA, July 30–Aug. 3, Paper No. 54516.
63.
Liu
,
X.
, and
Kuang
,
B.
,
2012
, “
Wide-Ranged Heat Transfer Correlations of Supercritical Water in Vertical Upward Channels
,”
Nucl. Sci. Eng.
,
32
, pp.
344
353
(in Chinese).https://inis.iaea.org/search/search.aspx?orig_q=RN:46127555
64.
Wang
,
C.
, and
Li
,
H.
,
2014
, “
Evaluation of the Heat Transfer Correlations for Supercritical Pressure Water in Vertical Tubes
,”
Heat Transfer Eng.
,
35
(
6–8
), pp.
685
692
.10.1080/01457632.2013.837756
65.
Chen
,
W.
, and
Fang
,
X.
,
2014
, “
A New Heat Transfer Correlation for Supercritical Water Flowing in Vertical Tube
,”
Int. J. Heat Mass Transfer
,
78
, pp.
156
160
.10.1016/j.ijheatmasstransfer.2014.06.059
66.
Zhao
,
M.
,
Gu
,
H. Y.
, and
Cheng
,
X.
,
2014
, “
Experimental Study on Heat Transfer of Supercritical Water Flowing Downward in Circular Tubes
,”
Ann. Nucl. Energy
,
63
, pp.
339
349
.10.1016/j.anucene.2013.07.003
67.
Saltanov
,
E.
,
Pioro
,
I.
,
Mann
,
D.
,
Gupta
,
S.
,
Mokry
,
S.
, and
Harvel
,
G.
,
2015
, “
Study on Specifics of Forced-Convective Heat Transfer in Supercritical Carbon Dioxide
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
1
(
1
), p.
18
.10.1115/1.4026395
68.
Liu
,
G.
,
Huang
,
Y.
,
Wang
,
J.
, and
Leung
,
L. H. K.
,
2016
, “
Heat Transfer of Supercritical Carbon Dioxide Flowing in a Rectangular Circulation Loop
,”
Appl. Therm. Eng.
,
98
, pp.
39
48
.10.1016/j.applthermaleng.2015.11.110
69.
Pioro
,
I. L.
,
Khartabil
,
H. F.
, and
Duffey
,
R. B.
,
2004
, “
Heat Transfer to Supercritical Fluids Flowing in Channels—Empirical Correlations Survey
,”
Nucl. Eng. Des.
,
230
(
1–3
), pp.
69
91
.10.1016/j.nucengdes.2003.10.010
70.
Kurganov
,
V. A.
,
Zeigarnik
,
Y. A.
, and
Maslakova
,
I. V.
,
2012
, “
Heat Transfer and Hydraulic Resistance of Supercritical-Pressure Coolants—Part I: Specifics of Thermophysical Properties of Supercritical Pressure Fluids and Turbulent Heat Transfer Under Heating Conditions in Round Tubes (State of the Art)
,”
Int. J. Heat Mass Transfer
,
55
(
11–12
), pp.
3061
3075
.10.1016/j.ijheatmasstransfer.2012.01.031
71.
Shitsman
,
M. E.
,
1963
, “
Impairment of the Heat Transmission at Supercritical Pressures
,”
High Temp.
,
1
(
2
), pp.
237
244
.
72.
Kiss
,
A.
,
Balaskó
,
M.
,
Horváth
,
L.
,
Kis
,
Z.
, and
Aszódi
,
A.
,
2017
, “
Experimental Investigation of the Thermal Hydraulics of Supercritical Water Under Natural Circulation in a Closed Loop
,”
Ann. Nucl. Energy
,
100
, pp.
178
203
.10.1016/j.anucene.2016.09.020
You do not currently have access to this content.