Abstract

The use of an inventory control system offers a unique benefit of stable cycle thermal efficiency during part-load operation. This article focuses on the influence of initial inventory tank pressure on the control level using pressure differential as a driving force of the inventory control system. The study also considered the effects of using multiple tanks to increase the overall size of the inventory control tank and the use of insulation to reduce the impact of temperature variation between the compressor discharge temperature and the inventory tank temperature. The second part of this analysis is a cost comparison between the use of multiple tanks and the use of a transfer compressor to achieve high cycle efficiency at continuous part-load operation. The discussions in this paper accentuate the optimum benefit for utilizing an inventory control system for a single-shaft intercooled-recuperated closed-cycle gas turbine plant.

References

1.
Olumayegun
,
O.
,
Wang
,
M.
, and
Kelsall
,
G.
,
2016
, “
Closed-Cycle Gas Turbine for Power Generation: A State-of-the-Art Review
,”
Fuel
,
180
, pp.
694
717
.10.1016/j.fuel.2016.04.074
2.
Osigwe
,
E. O.
,
2018
,
Techno-Economic and Risk Analysis of Closed-Cycle Gas Turbine Systems for Sustainable Energy Conversion
,
Cranfield University
,
Cranfield, UK
, p.
243
.
3.
Decher
,
R.
,
1994
,
Energy Conversion Systems, Flow Physics and Engineering
,
Oxford University Press
,
Oxford, UK
, p.
702
.
4.
Frutschi
,
H. U.
,
2005
,
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
,
ASME
,
New York
, p.
294
.
5.
Osigwe
,
E. O.
,
Gad-Briggs
,
A.
,
Igbong
,
D.
,
Nikolaidis
,
T.
, and
Pilidis
,
P.
,
2020
, “
Performance Modelling and Analysis of a Single-Shaft Closed-Cycle Gas Turbine Using Different Operational Control Strategy
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
6
(
2
), p.
021201
.10.1115/1.4044260
6.
Osigwe
,
E. O.
,
Gad-Briggs
,
A.
,
Pilidis
,
P.
,
Nikolaidis
,
T.
, and
Sampath
,
S.
,
2019
, “
Inventory Control Systems for Nuclear Powered Closed-Cycle Gas Turbine: Technical Studies on the Effect of Working Fluid Options
,”
Proceedings of the 27th International Conference on Nuclear Engineering
, JSME,
ASME
, Ibaraki, Japan, May 19–24, Paper No. 2085.
7.
Bammert
,
K.
, and
Krey
,
G.
,
1971
, “
Dynamic Behavior and Control of Single-Shaft Closed-Cycle Gas Turbines
,”
ASME J. Eng. Power
, 93(4), pp.
447
453
.10.1115/1.3445605
8.
Covert
,
R. E.
,
Krase
,
G.
, and
Morse
,
D. C.
,
1974
, “
Effect of Various Contol Modes on the Steady-State Full and Part Load Performance of a Direct-Cycle Nuclear Gas Turbine Power Plant
,” Proceedings of
ASME Winter Annual Meeting, New York, Nov. 17–22,
Paper No. 74-WA/GT-7.
9.
Openshaw
,
F.
,
Estrine
,
E.
, and
Croft
,
M.
,
1976
, “
Control of a Gas Turbine HTGR
,”
ASME Inernational Gas Turbine and Fluids Engineering Conference, New Orleans, LO, Mar. 21–25,
Paper No. 76-GT-97.
10.
Botha
,
B. W.
, and
Rousseau
,
P. G.
,
2007
, “
Control Options for Load Rejection in a Three-Shaft Closed Cycle Gas Turbine Power Plant
,”
Trans. ASME
,
129
(
3
), pp.
806
813
.10.1115/1.2718225
11.
Gad-Briggs
,
A.
,
Pilidis
,
P.
, and
Nikolaidis
,
T.
,
2017
, “
Analyses of the Control System Strategies and Methodology for Part Power Control of the Simple and Intercooled Recuperated Brayton Helium Gas Turbine Cycles for Generation IV Nuclear Power Plants
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
3
(
4
), p.
9
.10.1115/1.4036737
12.
Albright
,
J.
,
Liese
,
E. A.
,
Zitney
,
S.
,
Mahapatra
,
P.
, and
Bhattacharyya
,
D.
,
2017
, “
Load-Following Control for a 10 MWe Supercritical CO2 Recompression Brayton Power
,”
AIChE Annual Meeting
, Minneapolis, MN, Oct. 29–Nov. 3, Paper No. NETL-PUB-21179.
13.
Locatelli
,
G.
,
Boarin
,
S.
,
Pellegrino
,
F.
, and
Ricotti
,
M. E.
,
2015
, “
Load Following With Small Modular Reactors (SMR): A Real Options Analysis
,”
Energy
,
80
, pp.
41
54
.10.1016/j.energy.2014.11.040
14.
Singh
,
R.
,
Kearney
,
M. P.
, and
Manzie
,
C.
,
2013
, “
Extremum-Seeking Control of a Supercritical Carbon-Dioxide Closed Brayton Cycle in a Direct-Heated Solar Thermal Power Plant
,”
Energy
,
60
, pp.
380
387
.10.1016/j.energy.2013.08.001
15.
Gad-Briggs
,
A.
,
Pilidis
,
P.
, and
Nikolaidis
,
T.
,
2017
, “
Analyses of the Load Following Capabilities of Brayton Helium Gas Turbine Cycles for Generation IV Nuclear Power Plants
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
3
(
4
), p.
041017
.10.1115/1.4036983
16.
Matimba
,
T. A. D.
,
Krueger
,
D. L. W.
, and
Mathews
,
E. H.
,
2007
, “
A Multi-Tank Storage Facility to Effect Power Control in the PMBR Power Cycle
,”
Nucl. Eng. Des.
,
237
(
2
), pp.
153
160
.10.1016/j.nucengdes.2006.06.002
17.
Bitsch
,
D.
, and
Chaboseau
,
J.
,
1970
, “
Power Level Control of a Closed Loop Gas Turbine by Natural Transfer of Gas Between the Loop and Auxilliary Tanks
,”
British Nucl. Energy Soc.
, International Conference on Nuclear Gas Turbines, London, UK, Apr. 8, Paper No. 11, p.
5
.
18.
Dostal
,
V.
,
2004
,
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,
Massachusetts Institute of Technology
,
Cambridge, MA
, p.
317
.
19.
Yan
,
X.
,
1990
,
Dynamic Analysis and Control System Design for an Advanced Nuclear Gas Turbine Power Plant
,
Massachusetts Institute of Technology
,
Cambridge, MA
, p.
392
.
20.
Osigwe
,
E. O.
,
Pilidis
,
P.
,
Nikolaidis
,
T.
, and
Sampath
,
S.
,
2019
, “
Gas Turbine Arekret-Cycle Simulation Modelling for Training and Educational Purposes
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
5
(
4
), p.
11
.10.1115/1.4043681
21.
Berchtold
,
M.
,
1962
, “
Varying the Pressure Level of a Closed-Cycle Gas Turbine Plant
,” U.S. Patent Office 3,220,191.
22.
Berchtold
,
M.
, and
Keller
,
C.
,
1962
, “
Transfer of the Working Medium in the Working Medium Exchange Between a Closed-Cycle Gas Turbine Plant and a Reservoir
,” U.S. Patent Office 3,218,807.
23.
Matimba
,
T. A. D.
,
2004
,
A Thermo-Hydraulic Model of the Inventory Control System for Load Following in the PMBR
,
North-West University
,
Potchefstroom, South Africa
.
24.
Nieuwoudt
,
C.
,
2003
,
Helium Tank Management Model - A Report to Determine Tank Sizes
, PBMR Document and Data Control Centre,
Pretoria
,
South Africa
.
25.
PDHOnline Course
,
2012
, “
ASME Section I & Section VIII Fundamentals
,” PDH Center, Fairfax, VA, accessed Feb. 7, 2017, https://tuxdoc.com/download/asme-section-i-amp-viii-fundamentals_pdf
26.
Frutschi
,
H. U.
,
1979
, “
Method for Regulating the Power Output of a Thermodynamic System Operating on a Closed Gas Cycle and Apparatus for Carrying Out the Method
,” U.S. Patent Document 4,148,191.
27.
Moss
,
D.
,
2004
,
Pressure Vessel Design Manual
,
Gulf Professional Publishing
,
Oxford, UK
, p.
499
.
28.
Megyesy
,
E. F.
,
1973
,
Pressure Vessel Handbook
,
Pressure Vessel Publishing
,
Tulsa, Oklahoma
, p.
511
.
29.
Gerrard
,
A. M.
,
2007
,
Guide to Capital Cost Estimating
,
IChemE
,
Rugby, UK
, p.
115
.
30.
Corporation
,
F.
, and
Falls
,
G.
,
2014
, “
Automatic Control Valves Price List
,” Flomatic, New York, accessed Jan. 8, 2017, https://flomatic.com/assets/pdf_files/Control-Valve-Price-List.pdf
You do not currently have access to this content.