Abstract

Pressure loss coefficients are generally required by subchannel and system thermalhydraulics codes. These coefficients are not readily available for small modular reactors (SMRs) featuring nonconventional designs and novel coolants. In this study, the pressure loss coefficients were obtained using three-dimensional (3D) computational fluid dynamics (CFD) modeling for an advanced water-cooled reactor. A representative light water fuel assembly used in the Organization for Economic Co-operation and Development (OECD)/National Research Council Canada (NRC) pressurized water reactor subchannel and bundle tests (PSBT) benchmark was selected for CFD modeling and simulation under various working conditions. The fuel assembly includes three types of pressurized water reactor (PWR) spacer grids: simple grid (SG), nonmixing vane grid (NMVG), and mixing vane grid (MVG). Turbulent flow through subchannels of both nonheated and heated rod bundles was simulated to predict recoverable and nonrecoverable pressure distribution along the length of the bundle. It was observed that vortices were generated at the tips of spacer grids, affecting the cross-flow in subchannels significantly. The estimated pressure loss coefficients were found to be influenced by the flow conditions (Reynolds number or the upstream flow history) and spacer grid configuration. Pressure loss coefficient values ranged from 1.14 to 1.80, depending on the spacer grid type, design, and flow conditions. The CFD method used in this study was demonstrated to have the potential to generate input parameters required for the subchannel analysis and optimization of fuel assembly designs and serve as a surrogate for empirical correlations.

References

1.
Hidayatullah
,
H.
,
Susyadi
,
S.
, and
Hadid Subki
,
M.
,
2015
, “
Design and Technology Development for Small Modular Reactors—Safety Expectations, Prospects and Impediments of Their Deployment
,”
Prog. Nucl. Energy
,
79
, pp.
127
135
.10.1016/j.pnucene.2014.11.010
2.
Ismail
,
Y.
,
Bromley
,
B. P.
, and
Moore
,
M.
,
2019
, “
Assessment of Small Modular Reactors (SMRs) for Load-Following Capabilities
,”
Am. Nucl. Soc. Trans.
,
121
(
1
), pp.
1117
1120
.https://www.ans.org/pubs/transactions/article-47771/
3.
Floyd
,
M.
,
Bromley
,
B. P.
, and
Pencer
,
J.
,
2016
, “
A Canadian Perspective on Progress in Thoria Fuel Science and Technology
,”
CNL Nucl. Rev.
,
6
(
1
), pp.
1
17
.10.12943/CNR.2016.00016
4.
Colton
,
A. V.
, and
Bromley
,
B. P.
,
2018
, “
Simulations of Pressure-Tube-Heavy-Water Reactor Cores Fueled With Thorium-Based Mixed-Oxide Fuels
,”
Nucl. Technol.
,
203
(
2
), pp.
146
172
.10.1080/00295450.2018.1444898
5.
Colton
,
A. V.
, and
Bromley
,
B. P.
,
2018
, “
Lattice Physics Evaluation of 35-Element Mixed Oxide Thorium-Based Fuels for Use in Pressure Tube Heavy Water Reactors
,”
Ann. Nucl. Energy
,
117
, pp.
259
276
.10.1016/j.anucene.2018.03.010
6.
Colton
,
A. V.
,
Bromley
,
B. P.
,
Wojtaszek
,
D.
, and
Dugal
,
C.
,
2017
, “
Evaluation of Uranium-Based Fuels Augmented by Low Levels of Thorium for Near-Term Implementation in Pressure Tube Heavy Water Reactors
,”
Nucl. Sci. Eng.
,
186
(
1
), pp.
48
65
.10.1080/00295639.2016.1273021
7.
Colton
,
A. V.
, and
Bromley
,
B. P.
,
2016
, “
Full-Core Evaluation of Uranium-Based Fuels Augmented With Small Amounts of Thorium in Pressure Tube Heavy Water Reactors
,”
Nucl. Technol.
,
196
(
1
), pp.
1
12
.10.13182/NT16-70
8.
Bromley
,
B. P.
,
2014
, “
High Utilization Lattices for Thorium-Based Fuel Cycles in Heavy Water Reactors
,”
Nucl. Technol.
,
186
(
1
), pp.
17
32
.10.13182/NT13-86
9.
Rao
,
Y. F.
,
Cheng
,
Z.
,
Waddington
,
G. M.
, and
Nava-Dominguez
,
A.
,
2014
, “
ASSERT-PV 3.2: Advanced Subchannel Thermalhydraulics Code for CANDU Fuel Bundles
,”
Nucl. Eng. Des.
,
275
, pp.
69
79
.10.1016/j.nucengdes.2014.04.016
10.
Bromley
,
B. P.
,
Cheng
,
Z.
,
Nava Dominguez
,
A.
, and
Colton
,
A. V.
,
2021
, “
Sensitivity Studies to Assess the Impact of Geometry and Operating/Boundary Condition Perturbations on Thermal-Hydraulic Behavior of Advanced Fuel Channels in Pressure Tube Heavy Water Reactors With Uranium and Thorium-Based Fuels
,”
Nucl. Technol.
,
207
(
10
), pp.
1511
1537
.10.1080/00295450.2020.1827658
11.
Nava-Dominguez
,
A.
,
Liu
,
S.
,
Beuthe
,
T.
,
Bromley
,
B. P.
, and
Colton
,
A. V.
,
2021
, “
Steady-State Sub Channel Thermal Hydraulics Assessment of Advanced Uranium and Thorium Based Fuel Bundle Concepts for Potential Use in Pressure Tube Heavy Water Reactors
,”
Nucl. Technol.
,
207
(
8
), pp.
1216
1236
.10.1080/00295450.2020.1813463
12.
Rao
,
Y. F.
,
Onder
,
E. N.
, and
Podila
,
K.
,
2016
, “
Assessment of Subchannel Code ASSERT-PV for Supercritical Applications
,”
J. Supercrit. Fluids
,
117
, pp.
164
171
.10.1016/j.supflu.2016.06.016
13.
Zhu
,
G.
,
Xu
,
W.
, and
Xie
,
H.
,
2021
, “
Subchannel Analysis of Radial Uniform and Non-Uniform Heating Assembly Under Low Mass Flow Rate Conditions
,”
ASME
Paper No. ICONE28-63636.10.1115/ICONE28-63636
14.
INL
,
2015
,
RELAP5-3D Code Manuals Revision 43
,
Idaho National Laboratory
,
Idaho Falls, ID
.
15.
Wang
,
S.
,
Beuthe
,
T.
,
Huang
,
X.
,
Nava Dominguez
,
A.
,
Bromley
,
B. P.
, and
Colton
,
A. V.
,
2021
, “
Transient System Thermalhydraulic Assessment of Advanced Uranium and Thorium-Based Fuel Bundle Concepts for Potential Use in Pressure Tube Heavy Water Reactors—II: Full-Core Analyses
,”
Nucl. Technol.
,
207
(
4
), pp.
494
520
.10.1080/00295450.2020.1784669
16.
Wang
,
S.
,
Beuthe
,
T.
,
Huang
,
X.
,
Nava Dominguez
,
A.
,
Colton
,
A. V.
, and
Bromley
,
B. P.
,
2021
, “
Transient System Thermalhydraulic Assessment of Advanced Uranium and Thorium-Based Fuel Bundle Concepts for Potential Use in Pressure Tube Heavy Water Reactors—I: Two-Channel Analyses
,”
Nucl. Technol.
,
207
(
4
), pp.
469
493
.10.1080/00295450.2020.1788302
17.
Aydemir
,
N. U.
,
Trottier
,
A.
,
Xu
,
T.
,
Echlin
,
M.
, and
Chin
,
T.
,
2019
, “
Coupling of Reactor Transient Simulations Via the SALOME Platform
,”
Ann. Nucl. Energy
,
126
, pp.
434
442
.10.1016/j.anucene.2018.11.049
18.
Yang
,
X.
,
Schlegel
,
J. P.
,
Liu
,
Y.
,
Paranjape
,
S.
,
Hibiki
,
T.
, and
Ishii
,
M.
,
2012
, “
Measurement and Modeling of Two-Phase Flow Parameters in Scaled 8 × 8 BWR Rod Bundle
,”
Int. J. Heat Fluid Flow
,
34
, pp.
85
97
.10.1016/j.ijheatfluidflow.2012.02.001
19.
Rehme
,
K.
,
1973
, “
Pressure Drop Correlations for Fuel Element Spacers
,”
Nucl. Technol.
,
17
(
1
), pp.
15
23
.10.13182/NT73-A31250
20.
Yao
,
S. C.
,
Hochreiter
,
L. E.
, and
Leech
,
W. J.
,
1982
, “
Heat-Transfer Augmentation in Rod Bundles Near Grid Spacers
,”
ASME J. Heat Transfer
,
104
(
1
), pp.
76
81
.10.1115/1.3245071
21.
Holloway
,
M. V.
,
McClusky
,
H. L.
,
Beasley
,
D. E.
, and
Conner
,
M. E.
,
2004
, “
The Effect of Support Grid Features on Local, Single-Phase Heat Transfer Measurements in Rod Bundles
,”
ASME J. Heat Transfer
,
126
(
1
), pp.
43
53
.10.1115/1.1643091
22.
Roelofs
,
F.
,
Gopala
,
V. R.
,
Chandra
,
L.
,
Viellieber
,
M.
, and
Class
,
A.
,
2012
, “
Simulating Fuel Assemblies With Low Resolution CFD Approaches
,”
Nucl. Eng. Des.
,
250
, pp.
548
559
.10.1016/j.nucengdes.2012.05.029
23.
Lo
,
S.
, and
Osman
,
J.
,
2012
, “
CFD Modeling of Boiling Flow in PSBT 5 × 5 Bundle
,”
Sci. Technol. Nucl. Install.
,
2012
, p.
795935
.10.1155/2012/795935
24.
In
,
W. K.
,
Shin
,
C. H.
,
Kwack
,
Y. K.
, and
Lee
,
C. Y.
,
2015
, “
Measurement and CFD Calculation of Spacer Loss Coefficient for a Tight-Lattice Fuel Bundle
,”
Nucl. Eng. Des.
,
284
, pp.
153
161
.10.1016/j.nucengdes.2014.12.021
25.
Blyth
,
T.
,
2017
, “
Development and Implementation of CFD Informed Models for the Advanced Subchannel Code CTF
,” Doctoral Thesis,
Pennsylvania State University
,
College Park, PA
.
26.
Podila
,
K.
, and
Rao
,
Y. F.
,
2018
, “
Estimation of Appendage Pressure-Loss Coefficients for Fuel Rod Bundles Using Computational Fluid Dynamics
,”
Ann. Nucl. Energy
,
112
, pp.
597
602
.10.1016/j.anucene.2017.10.048
27.
Bayomy
,
A. M.
,
Bromley
,
B.
,
Nava Dominguez
,
A.
, and
Kelly
,
S.
,
2022
, “
Steady-State Subchannel Thermalhydraulic Assessment of a Full-Scale PWR-SMR Fuel Assembly With Conventional and Advanced Fuels
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
8
(
3
), p.
031601
.10.1115/1.4053829
28.
Rubin
,
A.
,
Schoedel
,
A.
, and
Avramova
,
M.
,
2010
, “OECD/NRC Benchmark Based on NUPEC PWR Subchannel and Bundle Tests (
PSBT
), Volume I: Experimental Database and Final Problem Specifications,” United States Nuclear Regulatory Commission, Nuclear Energy Agency, NES/NSC/DOC1, Report.https://www.ans.org/pubs/transactions/article-47771/
29.
Simcenter
,
2020
, “
Star-CCM+: Theory Manual, Siemens, Munich Nation
,” https://www.plm.automation.siemens.com/global/en/products/simcenter/STAR-CCM.html
30.
NuScale Power LLC
,
2018
, “
NuScale Standard Plant Design Certification Application, Chapter 4: Reactor, Part 2–Tier 2
,” https://www.nrc.gov/reactors/new-reactors/smr/nuscale/documents.html
31.
Conner
,
M. E.
,
Hassan
,
Y. A.
, and
Dominguez-Ontiveros
,
E. E.
,
2013
, “
Hydraulic Benchmark Data for PWR Mixing Vane Grid
,”
Nucl. Eng. Des.
,
264
, pp.
97
102
.10.1016/j.nucengdes.2012.12.001
32.
Podila
,
K.
,
Rao
,
Y. F.
,
Krause
,
M.
, and
Bailey
,
J.
,
2014
, “
A CFD Simulation of 5 × 5 Rod Bundles With Split-Type Spacers
,”
Prog. Nucl. Energy
,
70
, pp.
167
175
.10.1016/j.pnucene.2013.08.012
33.
Wang
,
Y.
,
Ferng
,
Y. M.
, and
Sun
,
L. X.
,
2019
, “
CFD Assist in Design of Spacer-Grid With Mixing-Vane for a Rod Bundle
,”
Appl. Therm. Energy
,
149
, pp.
565
577
.10.1016/j.applthermaleng.2018.12.090
34.
Peña-Monferrer
,
C.
,
Muñoz-Cobo
,
J. L.
, and
Chiva
,
S.
,
2014
, “
CFD Turbulence Study of PWR Spacer-Grids in a Rod Bundle
,”
Sci. Technol. Nucl. Install.
,
2014
, p.
635651
.10.1155/2014/635651
35.
Lei
,
J.
,
Bu
,
S.
,
Jiang
,
J.
,
Liu
,
H.
,
Yuan
,
D.
, and
Chen
,
D.
,
2021
, “
Numerical Investigation on Thermal-Hydraulic Performance in 7 × 7 Rod Bundle With Spacer Grid and Guide Tubes
,”
Int. J. Therm. Sci.
,
160
, p.
106675
.10.1016/j.ijthermalsci.2020.106675
36.
Zimmermann
,
M.
,
Cheng
,
X.
,
Otic
,
I.
,
Alleborn
,
N.
, and
Sieber
,
G.
,
2014
, “
Application of a CFD-Based Forced Cross Flow Model to a Sub-Channel Analysis Tool
,”
Proceedings of the 22nd International Conference on Nuclear Engineering, 2B: Thermal Hydraulics
, Prague, Czech Republic, July 7–11.10.1115/ICONE22-30927
37.
Bromley
,
B. P.
,
2022
, “
Physics Assessment of Non-Conventional Fuel Concepts for Very Compact Small Modular Reactors Using Hydroxides as Coolants and/or Moderators
,”
Nucl. Technol.
,
208
(
1
), pp.
160
191
.10.1080/00295450.2021.1874778
You do not currently have access to this content.