Abstract

To simulate heterogeneous bubbly flows, a hybrid method has been developed in several studies by combining the two-fluid model and the interface tracking method. Since this original hybrid method is based on the one-pressure modeling, which is a common approach for the two-fluid model, unphysical flow would occur in the flow where the surface tension is dominant. To resolve this inherent weakness of one-pressure modeling, we proposed a new formulation of the hybrid method in this study. The proposed hybrid method includes no pressure term in the dispersed phase because we regarded the dispersed phase as a group of discrete particles. The phase-field method is employed as the interface-tracking method. The proposed hybrid method was validated in several numerical simulations. Using the static bubble problem, we confirmed that in the proposed hybrid method simulation, there is no unphysical flow that is observed in the original hybrid method. In the bubble plume problem, we compared the bubble plume behavior and the time-averaged void fraction of the simulation results with those of previously reported experiments and found good agreement between them. From these validations, we confirmed that the proposed hybrid method was applicable to heterogeneous bubbly flow simulation, and it avoided the weakness which the original hybrid method has.

References

1.
Ishii
,
M.
, and
Hibiki
,
T.
,
1975
,
Thermo-Fluid Dynamic Theory of Two-Phase Flow
,
Springer New York
,
NY
, p.
462
.
2.
Drew
,
D.
,
A.
,
1983
, “
Mathematical Modeling of Two-Phase Flow
,”
Annu. Rev. Fluid Mech.
,
15
(
1
), pp.
261
291
.10.1146/annurev.fl.15.010183.001401
3.
Tomiyama
,
A.
, and
Shimada
,
N.
,
2001
, “
(N+2)-Field Modeling for Bubbly Flow Simulation
,”
Comput. Fluid Dyn. J.
,
9
, pp.
418
426
.
4.
Tomiyama
,
A.
,
Shimada
,
N.
, and
Asano
,
H.
,
2003
, “
Application of Number Density Transport Equation for the Recovery of Consistency in Multi-Field Model
,”
ASME
Paper No. GT2013-95390.10.1115/FEDSM2003-45168
5.
Maeda
,
A.
,
Sou
,
A.
, and
Tomiyama
,
A.
,
2006
, “
A Hybrid Method for Simulating Flows Including Fluid Particles
,”
ASME
Paper No. FEDSM2006-98156.10.1115/FEDSM2006-98156
6.
Wardle
,
KE.
, and
Weller
,
H. G.
,
2013
, “
Hybrid Multiphase CFD Solver for Coupled Dispersed/Segregated Flows in Liquid-Liquid Extraction
,”
Int. J. Chem. Eng.
,
2013
, pp.
1
13
.10.1155/2013/128936
7.
Shonibare
,
O. Y.
, and
Wardle
,
K. E.
,
2015
, “
Numerical Investigation of Vertical Plunging Jet Using a Hybrid Multifluid–VOF Multiphase CFD Solver
,”
Int. J. Chem. Eng.
,
2015
, pp.
1
14
.10.1155/2015/925639
8.
Hansch
,
S.
,
Lucas
,
D.
,
Krepper
,
E.
, and
Hohne
,
T.
,
2012
, “
A Multi-Field Two-Fluid Concept for Transitions Between Different Scales of Interfacial Structures
,”
Int. J. Multiphase Flow
,
47
, pp.
171
182
.10.1016/j.ijmultiphaseflow.2012.07.007
9.
Yan
,
K.
, and
Che
,
D.
,
2010
, “
A Coupled Model for Simulation of the Gas-Liquid Two-Phase Flow With Complex Flow Patterns
,”
Int. J. Multiphase Flow
,
36
(
4
), pp.
333
348
.10.1016/j.ijmultiphaseflow.2009.11.007
10.
Krepper
,
E.
,
Lucas
,
D.
,
Frank
,
T.
,
Prasser
,
H. M.
,
Zwart
,., and
P.
,
J.
,
2008
, “
The Inhomogeneous MUSIG Model for the Simulation of Poly-Dispersed Flows
,”
Nucl. Eng. Des.
,
238
(
7
), pp.
1690
1702
.10.1016/j.nucengdes.2008.01.004
11.
Marschall
,
H.
, and
Hinrichsen
,
O.
,
2013
, “
Numerical Simulation of Multi-Scale Two-Phase Flows Using a Hybrid Interface Resolving Two-Fluid Model (HIRES-TFM)
,”
J. Chem. Eng. Jpn.
,
46
(
8
), pp.
517
523
.10.1252/jcej.12we074
12.
C˘erne
,
G.
,
Petelin
,
S.
, and
Tiselj
,
I.
,
2001
, “
Coupling of the Interface Tracking and the Two-Fluid Models for the Simulation of Incompressible Two-Phase Flow
,”
J. Comput. Phys.
,
171
(
2
), pp.
776
804
.10.1006/jcph.2001.6810
13.
Minato
,
A.
,
Takamori
,
K.
, and
Ishida
,
N.
,
2000
, “
An Extended Two-Fluid Model for Interface Behavior in Gas-Liquid Two-Phase Flow
,”
Proceeding of the 8th International Conference of Nuclear Engineering (
ICONE8), Baltimore, MD, Apr. 2–6, pp.
27
35
.
14.
Morel
,
C.
,
2007
, “
Modeling Approaches for Strongly Non-Homogeneous Two- Phase Flows
,”
Nucl. Eng. Des.
,
237
(
11
), pp.
1107
1127
.10.1016/j.nucengdes.2007.01.005
15.
Nagayoshi
,
T.
,
Minato
,
A.
,
Misawa
,
M.
,
Suzuki
,
A.
,
Kuroda
,
M.
, and
Ichikawa
,
N.
,
2003
, “
Simulation of Multi-Dimensional Heterogeneous and Intermittent Two-Phase Flow by Using an Extended Two-Fluid Model
,”
J. Nucl. Sci. Technol.
,
40
(
10
), pp.
827
833
.10.1080/18811248.2003.9715425
16.
Tomiyama
,
A.
,
Sakoda
,
K.
,
Hayashi
,
K.
,
Sou
,
A.
,
Shimada
,
N.
, and
Hosokawa
,
S.
,
2006
, “
Modeling and Hybrid Simulation of Bubbly Flows
,”
Multiphase Sci. Technol.
,
18
(
1
), pp.
73
110
.10.1615/MultScienTechn.v18.i1.40
17.
Yoshida
,
H.
,
Ohnuki
,
A.
,
Takase
,
K.
,
Kureta
,
M.
,
Akimoto
,
H.
,
Okada
,
H.
, and
Yamamoto
,
K.
,
2003
, “
Development of Mechanistic Boiling Transition Model in Rod Bundles
,”
Proceeding of the 11th International Conference of Nuclear Engineering
, Tokyo, Japan, Apr. 20–23, Paper No. ICONE11-36097.
18.
Drew
,
D. A.
, and
Wallis
,
G. B.
,
1994
, “
Fundamentals of Two-Phase Flow Modeling
,”
Multiphase Sci. Technol.
,
8
(
1–4
), pp.
1
67
.10.1615/MultScienTechn.v8.i1-4.20
19.
Kataoka
,
I.
, and
Tomiyama
,
A.
,
1993
, “
Basic Equations and Their Mathematical Feature of Gas-Liquid Two-Phase Dispersed Flow Based on Two-Fluid Model
,”
Jpn. J. Multiphase Flow
,
7
(
2
), pp.
132
141 (in Japanese
).10.3811/jjmf.7.132
20.
Tamura
,
A.
, and
Katono
,
K.
,
2022
, “
Development of a Phase-Field Method for Phase Change Simulations Using a Conservative Allen-Cahn Equation
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
8
(
2
), p. 021401.10.1115/1.4050209
21.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
22.
Cook
,
T. L.
, and
Harlow
,
F. H.
,
1986
, “
Vortices in Bubble Two-Phase Flow
,”
Int. J. Multiphase Flow
,
12
(
1
), pp.
35
61
.10.1016/0301-9322(86)90003-0
23.
Wang
,
T.
, and
Wang
,
J.
,
2005
, “
Two-Fluid Model Based on the Lattice Boltzmann Equation
,”
Phys. Rev. E
,
71
(
4
), p.
045301
.10.1103/PhysRevE.71.045301
You do not currently have access to this content.