Abstract

The potentiality of Transuranic (TRU) fuel as dual cooled annular fuel rods with different types of burnable absorbers (BAs)- integrated burnable absorbers (IBAs), burnable poison rods (BPRs), coated absorbers, etc. in the hexagonal assembly of VVER-1000 was studied. Annular 7, Annular 8, and Annular 9 models were taken for various combinations of TRU fuel and BAs. Planned models were simulated in Monte Carlo particle simulation code OpenMC and lattice physics deterministic code Dragon Version5. Burnup-dependent multiplication factors (MFs) were simulated for 3000 effective full power days (EFPDs). Reactivity was calculated by taking 3% neutron leakage. The study showed that both the MF and reactivity for TRU fuel are significantly higher than conventional UO2 fuel. Linear reactivity model (LRM) was applied to find out cycle burnup, discharge cycle burnup, and cycle length. High cycle burnup, discharge burnup, and cycle length have been observed for TRU fuel compared to UO2 fuel. Burnup-dependent atomic concentration graphs showed that slight burn of Np-237, constant concentration for Cm-244, a slight increase for Am-242, and linear burnout of BAs- Gd-155, Gd-155, and Er-167. A lower concentration of Xe-135 has been observed for TRU fuel. Pin power distribution and energy-dependent neutron flux for different models and BAs combinations are also included in this study.

References

1.
Duderstadt
,
J. J.
, and
Hamilton
,
L. J.
,
1976
,
Nuclear Reactor Analysis
, 2nd ed.,
Wiley
,
New York
, p.
650
.
2.
Cacuci
,
D. G.
(Ed.),
2010
, “
Handbook of Nuclear Engineering, Volume 1, Nuclear Engineering Fundamentals
,”
Transuranium Elements in Nuclear Fuel Cycle
,
Springer
, New York, pp.
2937
2998
, Chap.
26
.
3.
Morreale
,
A. C.
,
Ball
,
M. R.
,
Novog
,
D. R.
, and
Luxat
,
J. C.
,
2012
, “
The Behaviour of Transuranic Mixed Oxide Fuel in a CANDU-900 Reactor
,”
International Conference on the Physics of Reactors, PHYSOR 2012: Advances in Reactor Physics
, Knoxville, TN, April 15-20, 2, pp.
1710
1725
.
4.
Dsouza
,
B.
,
2015
,
Neutronic Analysis of Light Water Small Modular Reactor With Flexible Fuel Configurations
,
Missouri University of Science and Technology
, Rolla, MO.
5.
Bodansky
,
D.
,
2006
, “
Reprocessing Spent Nuclear Fuel
,”
Phys. Today
,
59
(
12
), pp.
80
81
.10.1063/1.2435694
6.
Kazimi
,
M. S.
, and
Hejzlar
,
P.
,
2006
, “
High Performance Fuel Design for Next Generation PWRs
,” Massachusetts Institute of Technology, Center for Advanced Nuclear Energy Systems, Nuclear Fuel Cycle Program, Cambridge, MA, Report no. MIT-NFCPR-082.
7.
Yuan
,
Y.
,
2004
,
The Design of High Power Density Annular Fuel for LWRs
,
Department of Nuclear Engineering, Massachusetts Institute of Technology
, Cambridge, MA.
8.
Faghihi
,
F.
, and
Mirvakili
,
S. M.
,
2011
, “
Shut-Down Margin Study for the Next Generation VVER-1000 Reactor Including 13 × 13 Hexagonal Annular Assemblies
,”
Ann. Nucl. Energy
,
38
(
11
), pp.
2533
2540
.10.1016/j.anucene.2011.07.008
9.
Mozafari
,
M. A.
, and
Faghihi
,
F.
,
2013
, “
Design of Annular Fuels for a Typical VVER-1000 Core: Neutronic Investigation, Pitch Optimization, and MDNBR Calculation
,”
Ann. Nucl. Energy
,
60
, pp.
226
234
.10.1016/j.anucene.2013.04.035
10.
Nia
,
A. E.
,
Faghihi
,
F.
, and
Hadad
,
K.
,
2012
, “
Prompt and Power Reactivity Coefficients for the Next Generation VVER- 1000 Reactor Including Hexagonal Assemblies and Annular Fuels
,”
Prog. Nucl. Energy
,
61
, pp.
41
47
.10.1016/j.pnucene.2012.05.010
11.
Reda
,
S. M.
,
Mustafa
,
S. S.
, and
Elkhawas
,
N. A.
,
2020
, “
Investigating the Performance and Safety Features of Pressurized Water Reactors Using the Burnable Poisons
,” “at,”
Ann. Nucl. Energy
,
141
p.
107354
.10.1016/j.anucene.2020.107354
12.
Faghihi
,
F.
,
Roosta
,
F.
,
Ghaemi
,
S.
, and
Bagheri
,
S.
,
2019
, “
Core Designing of the Newly Proposed (U+Gd)O2 FAs in the VVERs Core and Comparison With Current UO2FAs
,”
Alexandria Eng. J.
,
58
(
2
), pp.
647
658
.10.1016/j.aej.2019.03.010
13.
Tran
,
H. N.
,
Hoang
,
V. K.
,
Liem
,
P. H.
, and
Hoang
,
H. T. P.
,
2019
, “
Neutronics Design of VVER-1000 Fuel Assembly With Burnable Poison Particles
,”
Nucl. Eng. Technol.
,
51
(
7
), pp.
1729
1737
.10.1016/j.net.2019.05.026
14.
Kulikov
,
G. G.
,
Kulikov
,
E. G.
,
Shmelev
,
A. N.
, and
Apse
,
V. A.
,
2017
, “
Protactinium-231 – New Burnable Neutron Absorber
,”
Nucl. Energy Technol.
,
3
(
4
), pp.
255
259
.10.1016/j.nucet.2017.10.002
15.
Wagner
,
J. C.
, and
Parks
,
C. V.
,
2001
, “
Parametric Study of the Effect of Burnable Poison Rods for PWR Burnup Credit
,” U.S. Nuclear Regulatory Commission, Rockville, MD, Report no. ORNL/TM-2000/373 TRN: US0304230.
16.
Ghazanfari
,
V.
,
Talebi
,
M.
,
Khorsandi
,
J.
, and
Abdolahi
,
R.
,
2016
, “
Effects of Water Based Al2O3, TiO2, and CuO Nanofluids as the Coolant on Solid and Annular Fuels for a Typical VVER-1000 Core
,”
Prog. Nucl. Energy
,
91
, pp.
285
294
.10.1016/j.pnucene.2016.05.007
17.
Romano
,
P. K.
,
Horelik
,
N. E.
,
Herman
,
B. R.
,
Nelson
,
A. G.
,
Forget
,
B.
, and
Smith
,
K.
,
2015
, “
OpenMC: A State-of-the-Art Monte Carlo Code for Research and Development
,”
Ann. Nucl. Energy
,
82
, pp.
90
97
.10.1016/j.anucene.2014.07.048
18.
Akter
,
Y.
,
Sahadath
,
M. H.
, and
Reza
,
F.
,
2021
, “
Assessment of the Burnup Characteristics of UO2 and MOX Fuel in the Mixed Solid and Annular Rod Configuration
,”
Nucl. Eng. Des.
,
381
, p.
111339
.10.1016/j.nucengdes.2021.111339
19.
Cavdar
,
U.
,
Altintaş
,
A.
, and
Karaca
,
B.
,
2018
, “
In-Situ Compaction and Sintering of Al Composites by Using a High-Frequency Induction System
,”
Kovove Materialy
,
56
(
03
), pp.
177
181
.10.4149/km_2018_3_177
20.
Burns
,
J. R.
,
Hernandez
,
R.
,
Terrani
,
K. A.
,
Nelson
,
A. T.
, and
Brown
,
N. R.
,
2020
, “
Reactor and Fuel Cycle Performance of Light Water Reactor Fuel With 235 U Enrichment Above 5%
,”
Ann. Nucl. Energy
,
142
, p.
107423
.10.1016/j.anucene.2020.107423
You do not currently have access to this content.