Abstract

A new subassembly type passive reactor shutdown device is proposed to expand the diversity and robustness of core disruptive accident prevention measures for sodium-cooled fast reactors (SFRs). The device contains pins with a fuel material that is in a solid state during normal operation but melts and fluidizes during an unprotected loss of flow (ULOF) or unprotected transient overpower (UTOP) accident. By rapidly transferring the liquefied device fuel into the lower plenum region of the pins via gravitation alone, the device passively provides high negative reactivity to the core. This study evaluated the nuclear and thermal properties of the device subassembly with metallic fuel to determine the device specifications for proper device operation during ULOF and UTOP accidents. The results of the transient analysis of the ULOF initiating phase in a 750-MWel-class mixed-oxide-fueled SFR core confirmed that a conventional homogeneous core maintains stable cooling of the core before coolant boiling in the driver fuel subassemblies. In contrast, the negative reactivity required to terminate the event by device operation was slightly higher in the low sodium void reactivity core than in the conventional homogeneous core.

References

1.
Sowa
,
E. S.
,
Barthold
,
W. P.
,
Eggen
,
D. T.
,
Huebotter
,
P. R.
,
Josephson
,
J.
,
Pizzica
,
P. A.
,
Turski
,
R. B.
, and
van Erp
,
J. B.
,
1976
, “
LMFBR Self-Actuated Shutdown Systems
,”
Proceedings of the International Meeting on Fast Reactor Safety and Related Physics
,
Chicago, IL
, Oct. 5–8, pp.
673
682
.
2.
Burke
,
T. M.
,
1998
, “
Summary of FY 1997 Work Related to JAPC-U.S. DOE Contract Study on Improvement of Core Safety – Study on GEM (III), HNF-2195-VA
,” Fluor Daniel Hanford, Inc., Richland, WA, p. 32, accessed Feb. 14, 2023, https://inis.iaea.org/collection/NCLCollectionStore/_Public/30/039/30039909.pdf?r=1&r=1
3.
Tentner
,
A. M.
,
Parma
,
E.
,
Wei
,
T.
, and
Wigeland
,
R.
,
2016
, “
Severe Accident Approach – Final Report Evaluation of Design Measures for Severe Accident Prevention and Consequence Mitigation
,”
Argonne National Laboratory
,
Chicago, IL
, p.
116
.
4.
IAEA
,
2020
, “
Passive Shutdown Systems for Fast Neutron Reactors
,”
IAEA Nuclear Energy Series
,
Vienna, Austria
, p.
110
, Report No. NR-T-1.16.
5.
Endo
,
H.
,
Kumaoka
,
Y.
,
Golan
,
S.
, and
Nakagawa
,
H.
,
1992
, “
Passive Safety Features of a Bottom Supported Fast Breeder Reactor Vessel
,”
Nucl. Technol., Vol.
,
99
(
3
), pp.
318
329
.10.13182/NT92-A34716
6.
Maschek
,
W.
,
Flad
,
M.
,
Boccaccini
,
C. M.
,
Wang
,
S.
,
Gabrielli
,
F.
,
Kriventsev
,
V.
,
Chen
,
X.
,
Zhang
,
D.
, and
Morita
,
K.
,
2011
, “
Prevention and Mitigation of Severe Accident Developments and Recriticalities in Advanced Fast Reactor Systems
,”
Prog. Nucl. Energy
,
53
(
7
), pp.
835
841
.10.1016/j.pnucene.2011.04.008
7.
Sciora
,
P.
,
Blanchet
,
D.
,
Buiron
,
L.
,
Fontaine
,
B.
,
Vanier
,
M.
,
Varaine
,
F.
,
Venard
,
C.
,
Massara
,
S.
,
Scholer
,
A. C.
, and
Verrier
,
D. P.
,
2011
, “
Low Void Effect Core Design Applied on 2400 MWth SFR Reactor
,” Proceedings of 2011 International Congress on Advances in Nuclear Power Plants (
ICAPP 2011
),
Nice, France
, May 2–6, Paper No. 11048, pp.
487
495
.https://www.researchgate.net/publication/299533268_Low_void_effect_core_design_applied_on_2400_MWth_SFR_reactor
8.
Morita
,
K.
,
Liu
,
W.
,
Arima
,
T.
,
Arita
,
Y.
,
Kawase
,
K.
,
Sato
,
I.
,
Matsuura
,
H.
,
Sekio
,
Y.
,
Sagara
,
H.
, and
Kawashima
,
M.
,
2023
, “
Development of a Passive Reactor Shutdown Device to Prevent Core Disruptive Accidents in Fast Reactors: A Preliminary Study
,”
ASME J. Nucl. Eng. Radiat. Sci.
, accepted.
9.
Japan Atomic Energy Agency
,
2006
, “
Feasibility Study on Commercialized Fast Reactor Cycle Systems Technical Study Report of Phase II—(1) Fast Reactor Plant Systems
,” Japan Atomic Energy Agency,
Ibaraki, Japan
, p.
45
, Paper No. JAEA-Research
2006
042
.
10.
Hayafune
,
H.
,
Sakamoto
,
Y.
,
Kotake
,
S.
,
Aoto
,
K.
,
Ohshima
,
J.
, and
Ito
,
T.
,
2011
, “
Conceptual Design Study for the Demonstration Reactor of JSFR: (1) Current Status of JSFR Development
,”
Proceedings of the 19th International Conference on Nuclear Engineering (ICONE-19)
,
Chiba, Japan
, May 16–19, Paper No. ICONE19-44140, p.
9
.
11.
Sugino
,
K.
,
Jin
,
T.
,
Hazam
,
T.
, and
Numata
,
K.
,
2012
, “
Preparation of Fast Reactor Group Constant Sets UFLIB.J40 and JFS-3-J4.0 Based on the JENDL-4.0 Data, JAEA-Data/Code 2011-017
,”
Japan Atomic Energy Agency
,
Ibaraki, Japan
, p.
52
.
12.
Shibata
,
K.
,
Iwamoto
,
O.
,
Nakagawa
,
T.
,
Iwamoto
,
N.
,
Ichihara
,
A.
,
Kunieda
,
S.
,
Chiba
,
S.
,
Furutaka
,
K.
,
Otuka
,
N.
,
Ohsawa
,
T.
,
Murata
,
T.
,
Matsunobu
,
H.
,
Zukeran
,
A.
,
Kamada
,
S.
, and
Katakura
,
J.
,
2011
, “
JENDL-4.0: A New Library for Nuclear Science and Engineering
,”
J. Nucl. Sci. Technol.
,
48
(
1
), pp.
1
30
.10.1080/18811248.2011.9711675
13.
Nakagawa
,
M.
, and
Tsuchihashi
,
K.
,
1984
, “
SLAROM: A Code for Cell Homogenization Calculation of Fast Reactor
,”
Japan Atomic Energy Research Institute
,
Ibaraki, Japan
, p.
90
, Paper No. JAERI 1294.
14.
Derstine
,
K. L.
,
1984
, “
DIF3D: A Code to Solve One-, Two-, and Three-Dimensional Finite Difference Diffusion Theory Problems
,”
Argonne National Laboratory
,
Argonne, Chicago, IL
, Apr., p.
294
, Report No. ANL-82-64.
15.
Power Reactor and Nuclear Fuel Development Corporation
,
1980
, “
Application for Reactor Installation Permit: Prototype Fast Breeder Reactor Monju
,”
National Diet Library Digital Collections
,
Tokyo, Japan
.
You do not currently have access to this content.