Abstract

This study analyzed an yttrium hydride (YH2) moderated supercritical carbon dioxide cooled reactor loaded with pin-type, beryllium oxide diluted oxide fuel elements to reduce the critical enrichment. The impact of the YH2 on the coolant void reactivity was studied along with a moderator zoning scheme to flatten the radial power distribution. The YH2 was added as hexagonal moderating rods at the center of the fuel assemblies. The core was modeled using the continuous-energy Reactor Monte Carlo code (RMC) with the on-the-fly cross sections treatment. The results showed that the YH2 moderator increased the thermal fission and reduced the critical enrichment of the core with the same diluent volume fraction by more than 30%. The YH2 moderator significantly softened the neutron energy spectrum and reduced the neutron leakage upon core voiding, resulting in both a weaker positive spectral reactivity feedback and a weaker negative leakage reactivity feedback during core depressurization. For an UO2-loaded core, the YH2 gave a lower negative coolant void reactivity, while for a mixed oxide fuel (MOX)-loaded core with diluent volume fractions smaller than 35%, the spectral feedback was more important and the YH2 strongly reduced the positive coolant void reactivity to less than $1. Arranging the YH2 in the peripheral assemblies reduced the radial power peaking factor to 1.319. The study shows that the YH2 moderator can reduce the critical enrichment, make the core less sensitive to voiding, and can flatten the radial power distribution of a single-enrichment core through moderator zoning.

References

1.
US DOE
,
2002
, “
A Technology Roadmap for Generation IV Nuclear Energy Systems
,”
US Department of Energy
,
Washington, DC
, accessed Mar. 6, 2023, https://www.gen-4.org/gif/jcms/c_40481/technology-roadmap
2.
Waltar
,
A. E.
, and
Reynolds
,
A. B.
,
1981
,
Fast Breeder Reactors
,
Springer
, New York.
3.
Kemmish
,
W. B.
,
Quick
,
M. V.
, and
Hirst
,
I. L.
,
1982
, “
The Safety of CO2 Cooled Breeder Reactors Based on Existing Gas Cooled Reactor Technology
,”
Prog. Nucl. Energy
,
10
(
1
), pp.
1
17
.10.1016/0149-1970(82)90017-8
4.
Ahn
,
Y.
,
Bae
,
S. J.
,
Kim
,
M.
,
Cho
,
S.
,
Baik
,
S.
,
Lee
,
J.
, and
Cha
,
J.
,
2015
, “
Review of Supercritical CO2 Power Cycle Technology and Current Status of Research and Development
,”
Nucl. Eng. Technol.
,
47
(
6
), pp.
647
661
.10.1016/j.net.2015.06.009
5.
Kato
,
Y.
,
Nitawaki
,
T.
, and
Muto
,
Y.
,
2004
, “
Medium Temperature Carbon Dioxide Gas Turbine Reactor
,”
Nucl. Eng. Des.
,
230
, pp.
195
207
.10.1016/j.nucengdes.2003.12.002
6.
Shropshire
,
D. E.
,
2004
, “
Lessons Learned From Gen I Carbon Dioxide Cooled Reactors
,” ASME Paper No. ICONE12-49380.10.1115/ICONE12-49380
7.
Rooijen
,
W. F. G.
,
Kloosterman
,
J. L.
,
Hagen
,
T. H. J. J.
, and
Dam
,
H.
,
2005
, “
Fuel Design and Core Layout for a Gas-Cooled Fast Reactor
,”
Nucl. Technol.
,
151
(
3
), pp.
221
238
.10.13182/NT05-A3645
8.
Handwerk
,
C. S.
,
2007
, “
Optimized Core Design of a Supercritical Carbon Dioxide-Cooled Fast Reactor
,” Ph.D. dissertation,
Department of Nuclear Science and Engineering, Massachusetts Institute of Technology
,
Boston, MA
.
9.
Pope
,
M. A.
,
2004
, “
Reactor Physics Design of Supercritical CO2-Cooled Fast Reactors
,” MS dissertation,
Department of Nuclear Science and Engineering, Massachusetts Institute of Technology
,
Boston, MA
.
10.
Parma
,
E. J.
,
Wright
,
S. A.
,
Vernon
,
M. E.
,
Fleming
,
D. D.
,
Rochau
,
G. E.
,
Suo-Anttila
,
A. J.
,
Rashdan
,
A. A.
, and
Tsvetkov
,
P. V.
,
2011
, “
Supercritical CO2 Direct Cycle Gas Fast Reactor (SC-GFR) Concept
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2011-2525.
11.
Kim
,
Y.
,
Hartanto
,
D.
, and
Yu
,
H.
,
2016
, “
Neutronics Optimization and Characterization of a Long-Life SCO2-Cooled Micro Modular Reactor
,”
Int. J. Energy Res.
,
41
(
6
), pp.
976
984
.10.1002/er.3686
12.
Rooijen
,
W. F. G.
,
2006
, “
Improving Fuel Cycle Design and Safety Characteristics of a Gas Cooled Fast Reactor
,” Ph.D. dissertation,
Delft University of Technology
,
Delft, The Netherlands
.
13.
Betzler
,
B. R.
,
Ade
,
B. J.
,
Wysocki
,
A. J.
,
Jain
,
P. K.
,
Chesser
,
P. C.
,
Greenwood
,
M. S.
, and
Terrani
,
K. A.
,
2020
, “
Transformational Challenge Reactor Preconceptual Core Design Studies
,”
Nucl. Eng. Des.
,
367
, p.
110781
.10.1016/j.nucengdes.2020.110781
14.
Hu
,
X.
,
Schapper
,
D.
,
Silva
,
C. M.
, and
Terrani
,
K. A.
,
2020
, “
Fabrication of Yttrium Hydride for High-Temperature Moderator Application
,”
J. Nucl. Mater.
,
539
, p.
152335
.10.1016/j.jnucmat.2020.152335
15.
Pope
,
M. A.
,
2006
, “
Thermal Hydraulic Design of a 2400 MW Direct Supercritical CO2-Cooled Fast Reactor
,” Ph.D. dissertation,
Department of Nuclear Science and Engineering, Massachusetts Institute of Technology
,
Boston, MA
.
16.
Kemmish
,
W. B.
,
1982
, “
Gas-Cooled Fast Reactors
,”
Nucl. Energy
,
21
, pp.
489
511
.https://www.osti.gov/etdeweb/biblio/6886935
17.
Meyer
,
M. K.
,
Fielding
,
R.
, and
Gan
,
J.
,
2007
, “
Fuel Development for Gas-Cooled Fast Reactors
,”
J. Nucl. Mater.
,
371
, pp.
281
287
.10.1016/j.jnucmat.2007.05.013
18.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
Mclinden
,
M. O.
,
2010
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP. 9.0
,”
NIST NSRDS
,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
19.
Houten
,
R.
,
1974
, “
Selected Engineering and Fabrication Aspects of Nuclear Metal Hydrides (Li, Ti, Zr, and Y)
,”
Nucl. Eng. Des.
,
31
(
3
), pp.
434
448
.10.1016/0029-5493(75)90178-8
20.
Wang
,
K.
,
Li
,
Z.
,
She
,
D.
,
Liang
,
J.
,
Xu
,
Q.
,
Qiu
,
Y.
,
Yu
,
J.
,
Sun
,
J.
,
Fan
,
X.
, and
Yu
,
G.
,
2015
, “
RMC—A Monte Carlo Code for Reactor Core Analysis
,”
Ann. Nucl. Energy
,
82
, pp.
121
129
.10.1016/j.anucene.2014.08.048
21.
Viitanen
,
T.
, and
Leppänen
,
J.
,
2012
, “
Explicit Treatment of Thermal Motion in Continuous-Energy Monte Carlo Tracking Routines
,”
Nucl. Sci. Eng.
,
171
(
2
), pp.
165
173
.10.13182/NSE11-36
22.
Liu
,
M.
,
Ma
,
Y.
,
Guo
,
X.
,
Liu
,
S.
,
Liu
,
G.
,
Huang
,
S.
, and
Wang
,
K.
,
2021
, “
An Improved Tracking Method for Particle Transport Monte Carlo Simulations
,”
J. Comput. Phys.
,
437
, p.
110330
.10.1016/j.jcp.2021.110330
23.
Liu
,
S.
,
Yuan
,
Y.
,
Yu
,
J.
, and
Wang
,
K.
,
2016
, “
Development of on-the-fly Temperature-Dependent Cross-Sections Treatment in RMC Code
,”
Ann. Nucl. Energy
,
94
, pp.
144
149
.10.1016/j.anucene.2016.02.026
24.
Brown
,
D. A.
,
Chadwick
,
M. B.
,
Capote
,
R.
,
Kahler
,
A. C.
,
Trkov
,
A.
,
Herman
,
M. W.
,
Sonzogni
,
A. A.
, et al.,
2018
, “
ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library With CIELO-Project Cross Sections, New Standards and Thermal Scattering Data
,”
Nucl. Data Sheets
,
148
, pp.
1
142
.10.1016/j.nds.2018.02.001
You do not currently have access to this content.