Abstract
A study is conducted of the response of a jack-up rig to random wave loading. Steady current and wind load effects are also included. The effects of varying the relative motion assumption (in the Morison equation) and of varying the bottom fixity assumptions are investigated. One “fixity” model employs nonlinear soil springs. Time domain simulations are performed using linearized as well as fully nonlinear models for the jack-up rig. Comparisons of response statistics are made for two seastates. Hydrodynamic damping causes the rms response to be lower in the relative Morison case. The absence of this source of damping in the absolute Morison force model gives rise to larger resonance/dynamic effects—this tends to “Gaussianize” the response. Hence, the relative Morison model leads to stronger non-Gaussian behavior than the absolute Morison model. This is reflected in moments as well as extremes. The different support conditions studied are seen to significantly influence extreme response estimates. In general, stiffer models predict smaller rms response estimates, but also exhibit stronger non-Gaussian behavior. The choice of the Morison force modeling assumption (i.e., the relative versus the absolute motion formulation) is seen to have at least a secondary role in influencing response moments and extremes.