A simplified model of the motion of a grounding iceberg for determining the gouge depth into the seabed is proposed. Specifically, taking into account uncertainties relating to the soil strength, a nonlinear stochastic differential equation governing the evolution of the gouge length/depth in time is derived. Further, a recently developed Wiener path integral (WPI) based approach for solving approximately the nonlinear stochastic differential equation is employed; thus, circumventing computationally demanding Monte Carlo based simulations and rendering the approach potentially useful for preliminary design applications. The accuracy/reliability of the approach is demonstrated via comparisons with pertinent Monte Carlo simulation (MCS) data.

References

1.
United States Geological Survey (USGS)
,
2008
, “
90 Billion Barrels of Oil and 1,670 Trillion Cubic Feet of Natural Gas Assessed in the Arctic
,” United States Geological Survey, Reston, VA.
2.
OG21 Strategy Report
,
2006
, “
Technology Strategy for the Arctic
,” Oil and Gas in the 21 Century, The Research Council of Norway, Strategy Document 2006.
3.
Barrette
,
P.
,
2011
, “
Offshore Pipeline Protection Against Seabed Gouging By Ice: An Overview
,”
Cold Reg. Sci. Technol.
,
69
(
1
), pp.
3
20
.
4.
Abdalla
,
B.
,
Jukes
,
P.
,
Eltaher
,
A.
, and
Duron
,
B.
,
2008
, “
The Technical Challenges of Designing Oil and Gas Pipelines in the Arctic
,”
Oceans ‘08 MTS/IEEE
, Quebec City, QC, Canada.
5.
Abdalla
,
B.
,
Pike
,
K.
,
Eltaher
,
A.
,
Jukes
,
J.
, and
Duron
,
B.
,
2009
, “
Development and Validation of a Coupled Eulerian Lagrangian Finite Element Ice Scour Model
,”
ASME
Paper No. OMAE2009-79553.
6.
Banneyake
,
R.
,
Hossain
,
M. K.
,
Eltaher
,
A.
,
Nguyen
,
T.
, and
Jukes
,
P.
,
2011
, “
Ice-Soil-Pipeline Interactions Using Coupled Eulerian-Lagrangian (CEL) Ice Gouge Simulations—Extracts From Ice Pipe JIP
,”
Offshore Technology Conference
, Paper No. OTC-22047-MS.
7.
Jukes
,
P.
,
Eltaher
,
A.
,
Abdalla
,
B.
, and
Duron
,
B.
,
2008
, “
The Design and Simulation of Arctic Subsea Pipelines—Ice Gouging Formulations)
,”
4th Annual Arctic Oil & Gas Conference
, Oslo, Norway.
8.
Konuk
,
I. S.
, and
Gracie
,
R.
,
2004
, “
A 3-Dimensional Eulerian FE Model for Ice Scour
,”
ASME
Paper No. IPC2004-0075.
9.
Konuk
,
I. S.
,
Yu
,
S.
, and
Gracie
,
R.
,
2005
, “
An ALE FEM Model of Ice Scour
,”
11th International Conference of the International Association of Computer Methods and Advance in Geomechanics
, Turin, Italy, June 19–21, Vol.
3
, pp.
63
70
.
10.
Phillips
,
R.
,
Barrett
,
J.
, and
Al-Showaiter
,
A.
,
2010
, “
Ice Keel-Seabed Interaction: Numerical Modeling Validation
,”
Offshore Technology Conference
, Paper No. OTC2010-20696.
11.
Liferov
,
P.
,
Shkhinek
,
K. N.
,
Vitali
,
L.
, and
Serre
,
N.
,
2007
, “
Ice Gouging Study—Actions and Effects
,”
Port and Ocean Engineering Under Arctic Conditions POAC-07
, Dalian, China, pp.
774
786
.
12.
Rubinstein
,
R. Y.
, and
Kroese
,
D. P.
,
2007
,
Simulation and the Monte Carlo Method
,
Wiley
,
Hoboken, NJ
.
13.
Au
,
S. K.
, and
Wang
,
Y.
,
2014
,
Engineering Risk Assessment With Subset Simulation
,
Wiley
,
Singapore
, Chap. 2.
14.
Palmer
,
A. C.
, and
Niedoroda
,
A.
,
2005
, “
Ice Gouging and Pipelines: Unresolved Questions
,”
18th Conference on Ports and Ocean Engineering Under Arctic Conditions
(
POAC
), Potsdam, NY, Vol.
1
, pp.
11
22
.
15.
Chari
,
T. R.
,
1975
, “
Some Geotechnical Aspects of Iceberg Grounding
,”
Ph.D. thesis
, Memorial University of Newfoundland, St. John's, Canada.
16.
Chari
,
T. R.
,
1979
, “
Geotechnical Aspects of Iceberg Scours on Ocean Floors
,”
Can. Geotech. J.
,
16
(
2
), pp.
379
390
.
17.
Chari
,
T. R.
,
Peters
,
G. R.
, and
Muthukrishnaiah
,
K.
,
1980
, “
Hydrodynamic Effects on Iceberg Gouging
,”
Cold Reg. Sci. Technol.
,
1
(
3–4
), pp.
223
230
.
18.
Been
,
K.
,
Kosar
,
K.
,
Hachey
,
J.
,
Rogers
,
B. T.
, and
Palmer
,
A. C.
,
1990
, “
lce Scour Models
,”
International Conference on Offshore Mechanics and Arctic Engineering
, Vol.
5
, pp.
179
188
.
19.
Croasdale
,
K.
,
Comfort
,
G.
, and
Been
,
K.
,
2005
, “
Investigation of Ice Limits to Ice Gouging
,”
18th International Conference on Port and Ocean Engineering Under Arctic Conditions
, Vol.
1
, pp.
23
32
.
20.
Kioka
,
S.
, and
Saeki
,
H.
,
1995
, “
Mechanics of Ice Gouging
,”
5th International Offshore and Polar Engineering Conference (ISOPE)
, Vol.
2
, pp.
398
402
.
21.
Lopez
,
R.
,
Chari
,
T. R.
,
Moore
,
E.
,
Peters
,
G. R.
, and
Zielinski
,
A.
,
1981
, “
Environmental Factors Affecting Iceberg Scour Estimates
,”
Cold Reg. Sci. Technol.
,
4
(
1
), pp.
55
61
.
22.
Walter
,
D. J.
, and
Phillips
,
R.
,
1998
, “
PRISE—Force Models for Drained and Undrained Steady State Ice Scouring
,” C-CORE Publications 98-C33.
23.
Chopra
,
A. K.
,
1995
,
Dynamics of Structures Theory and Applications to Earthquake Engineering
,
Prentice Hall
,
Upper Saddle River, NJ
. Chap. 3.
24.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2012
, “
An Analytical Wiener Path Integral Technique for Non-Stationary Response Determination of Nonlinear Oscillators
,”
Probab. Eng. Mech.
,
28
, pp.
125
131
.
25.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2014
, “
Nonstationary Stochastic Response Determination of Nonlinear Systems: A Wiener Path Integral Formalism
,”
J. Eng. Mech.
,
140
(
9
).
26.
Morison
,
J. R.
,
Johnson
,
J. W.
, and
Shaaf
,
S. A.
,
1950
, “
The Force Exerted by Surface Waves on Piles
,”
J. Pet. Technol.
,
2
(05), pp.
149
154
.
27.
Terzaghi
,
K.
,
Peck
,
R. B.
, and
Mesri
,
G.
,
1996
,
Soil Mechanics in Engineering Practice
, 3rd ed.,
Wiley
,
New York
, Chap. 8.
28.
Coyne
,
J. C.
, and
Lewis
,
G. W.
,
1999
, “
Analysis of Plowing Forces for a Finite-Width Blade in Dense, Ocean Bottom Sand
,”
OCEANS '99 MTS/IEEE
, Sept. 13–16, Vol.
1
, pp.
1
10
.
29.
Palmer
,
A.
,
Konuk
,
I.
,
Love
,
J.
,
Been
,
K.
, and
Comfort
,
G.
,
1989
, “
Ice Scour Mechanics
,” Canada Oil and Gas Lands Administration/Gulf Canada Resources, Ltd., Ottawa, ON, Canada.
30.
Shampine
,
L. F.
,
1994
,
Numerical Solution of Ordinary Differential Equations
,
Chapman & Hall
,
New York
, Chap. 4.
31.
Det Norske Veritas
,
2010
, “
Environmental Conditions and Environmental Loads
,” Paper No. DNV-RP-C205.
32.
Det Norske Veritas
,
2012
, “
Statistical Representation of Soil Data
,” Paper No. DNV-RP-C207.
33.
Ang
,
A. S.
, and
Tang
,
W. H.
,
2007
,
Probability Concepts in Engineering
,
Wiley
,
Hoboken, NJ
, Chaps. 1 and 4.
34.
Schuëller
,
G. I.
,
2007
, “
On the Treatment of Uncertainties in Structural Mechanics and Analysis
,”
Comput. Struct.
,
85
, pp.
235
243
.
35.
King
,
T.
,
Phillips
,
R.
,
Barrett
,
J.
, and
Sonnichsen
,
G.
,
2009
, “
Probabilistic Pipeline Burial Analysis for Protection Against Ice Scour
,”
Cold Reg. Sci. Technol.
,
59
(
1
), pp.
58
64
.
36.
Kenny
,
S.
,
Barrett
,
J.
,
Phillips
,
R.
, and
Popescu
,
R.
,
2007
, “
Integrating Geohazard Demand and Structural Capacity Modeling Within a Probabilistic Design Framework for Offshore Arctic Pipelines
,”
Seventeenth International Ocean and Polar Engineering Conference
(
ISOPE
), Lisbon, Portugal, Paper No. ISOPE2007-SBD-03.
37.
Sicilia
,
C.
,
Bonnet
,
E.
, and
Cooper
,
P. A.
,
2014
, “
Probabilistic Lateral Buckling Assessment
,”
Twenty-Fourth International Ocean and Polar Engineering Conference
(
ISOPE
), Busan, Korea, Vol.
25
, pp.
241
246
.
38.
Gomes
,
W.
, and
Beck
,
A. T.
,
2014
, “
Optimal Inspection and Design of Onshore Pipelines Under External Corrosion Process
,”
Struct. Saf.
,
47
, pp.
48
58
.
39.
Li
,
J.
, and
Chen
,
J.
,
2009
,
Stochastic Dynamics of Structures
,
Wiley
,
Singapore
, Chaps. 5 and 6.
40.
Kougioumtzoglou
,
I. A.
,
2013
, “
Stochastic Joint Time-Frequency Response Analysis of Nonlinear Structural Systems
,”
J. Sound Vib.
,
332
(
26
), pp.
7153
7173
.
41.
Spanos
,
P. D.
, and
Kougioumtzoglou
,
I. A.
,
2014
, “
Survival Probability Determination of Nonlinear Oscillators Subject to Evolutionary Stochastic Excitation
,”
ASME J. Appl. Mech.
,
81
, pp.
1
9
.
42.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2009
, “
An Approximate Approach for Nonlinear System Response Determination Under Evolutionary Stochastic Excitation
,”
Curr. Sci.
,
97
, pp.
1203
1211
.
43.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2013
, “
Nonlinear MDOF System Stochastic Response Determination Via a Dimension Reduction Approach
,”
Comput. Struct.
,
126
, pp.
135
148
.
44.
Wiener
,
N.
,
1921
, “
The Average of an Analytic Functional
,”
Proc. Natl. Acad. Sci. USA
,
7
(
9
), pp.
253
260
.
45.
Feynman
,
R. P.
,
1948
, “
Space-Time Approach to Non-Relativistic Quantum Mechanics
,”
Rev. Modern Phys.
,
20
, pp.
367
387
.
46.
Chaichian
,
M.
, and
Demichev
,
A.
,
2001
,
Path Integrals in Physics: Stochastic Processes and Quantum Mechanics
, Vol.
I
,
Institute of Physics Publishing
,
Bristol, PA
.
47.
Di Matteo
,
A.
,
Kougioumtzoglou
,
I. A.
,
Pirrotta
,
A.
,
Spanos
,
P. D.
, and
Di Paola
,
M.
,
2014
, “
Non-Stationary Stochastic Response Determination of Nonlinear Oscillators With Fractional Derivatives Elements Via the Wiener Path Integral
,”
Probab. Eng. Mech.
,
38
, pp.
127
135
.
48.
Ewing
,
G. M.
,
1985
,
Calculus of Variations With Applications
,
Dover
,
New York
, Chap. 4.
49.
De Coster
,
C.
, and
Habets
,
P.
,
2006
,
Two-Point Boundary Value Problems: Lower and Upper Solutions
,
Elsevier
,
Amsterdam, The Netherlands
, Chap. 1.
You do not currently have access to this content.