The dynamic interaction between pipeline vibration and local scour is investigated numerically. The sediment scour model is adopted to calculate the local scour below pipeline. The general moving objects (GMO) model fully coupled with the fluids is established to simulate the pipeline vibration. The present results are consistent with the previous experimental results and show good agreement. The scour depth and scour hole scale are closely related to the amplitude of pipeline vibration. The effects of initial gap-to-diameter ratio, reduced velocity, and pipeline diameter on the local scour and pipeline vibration are investigated.
Issue Section:
Piper and Riser Technology
References
1.
Brors
, B.
, 1999
, “Numerical Modeling of Flow and Scour at Pipelines
,” J. Hydraul. Eng.
, 125
(5
), pp. 511
–523
.2.
Chen
, X. Y.
, Zhang
, L. L.
, Chen
, L. H.
, Li
, X.
, and Liu
, D. S.
, 2019, “Slope Stability Analysis Based on the Coupled Eulerian-Lagrangian Finite Element Method
,” Bull. Eng. Geol. Environ.
(epub).3.
Sumer
, B. M.
, Jensen
, H. R.
, Mao
, Y.
, and Fredsøe
, J.
, 1988
, “Effect of Lee-Wake on Scour Below Pipelines in Current
,” J. Waterw. Port Coastal Ocean Eng.
, 114
(5
), pp. 599
–614
.4.
Mao
, Y.
, 1987
, The Interaction Between a Pipeline and an Erodible Bed
, Technical University of Denmark
, Kongens Lyngby, Denmark
.5.
Subhasish
, D.
, and P
, S. N.
, 2008
, “Clear-Water Scour Below Underwater Pipelines Under Steady Flow
,” J. Hydraul. Eng.
, 134
(5
), pp. 588
–600
.6.
Liu
, R.
, Yan
, S. W.
, and Wu
, X. L.
, 2013, “Model Test Studies on soil Restraint to Pipeline Buried in Bohai Soft Clay
,” J. Pipeline Syst. Eng. Prac.
, 4
(1), pp. 49–56.7.
Zhang
, Q.
, Draper
, S.
, Liang
, C.
, Zhao
, M.
, and An
, H.
, 2016
, “Experimental Study of Local Scour Beneath Two Tandem Pipelines in Steady Current
,” Coastal Eng. J.
, 59
(2
), p. 1750002
.8.
Griffiths
, T.
, Draper
, S.
, Sun
, W.
, White
, D.
, Cheng
, L.
, and An
, H.
, 2016
, “Investigation of Scour Onset Under Seabed Pipelines With Geometric Irregularities
,” Scour and Erosion
, CRC Press
/Balkema
, Boca Raton, FL, pp. 191
–200
.9.
Griffiths
, T.
, Draper
, S.
, Sun
, W.
, White
, D.
, Cheng
, L.
, and An
, H.
, 2016
, “Exploring the Bifurcation Between Sedimentation Versus Scour Onset Below Pipelines in Unidirectional Currents
,” Scour and Erosion
, J.
Harris
, R.
Whitehouse
, and S.
Moxon
, eds., CRC Press
/Balkema
, Boca Raton, FL, pp. 201
–211
.10.
Li
, M. G.
, Chen
, J. J.
, Wang
, J. H.
, and Zhu
, Y. F.
, 2018
, “Comparative Study of Construction Methods for Deep Excavations Above Shield Tunnels
,” Tunnelling Underground Space Technol.
, 71
, pp. 329
–339
.11.
Sumer
, B. M.
, and Fredsøe
, J.
, 2002
, The Mechanics of Scour in the Marine Environment
, River Edge
, NJ
.12.
Sumer
, B. M.
, Truelsen
, C.
, Sichmann
, T.
, and Fredsøe
, J.
, 2001
, “Onset of Scour Below Pipelines and Self-Burial
,” Coastal Eng.
, 42
(4
), pp. 313
–335
.13.
Sumer
, B. M.
, and Fredsøe
, J.
, 1990
, “Scour Below Pipelines in Waves
,” J. Waterw. Port, Coastal, Ocean Eng.
, 116
(3
), pp. 307
–323
.14.
Fredsøe
, J.
, Sumer
, B. M.
, and Arnskov
, M. M.
, 1992
, “Time Scale for Wave/Current Scour Below Pipelines
,” First International Offshore Polar Engineering Conference, Edinburgh, UK, Aug. 11–16, pp. 11–16.15.
Mirmohammadi
, A.
, and Ketabdari
, M. J.
, 2011
, “Numerical Simulation of Wave Scouring Beneath Marine Pipeline Using Smoothed Particle Hydrodynamics
,” Int. J. Sediment Res.
, 26
(3
), pp. 331
–342
.16.
Brørs
, B.
, 1999
, “Numerical Modeling of Flow and Scour at Pipelines
,” J. Hydraul. Eng.
, 125
(5
), pp. 511–523.https://ascelibrary.org/doi/10.1061/%28ASCE%290733-9429%281999%29125%3A5%28511%2917.
Li
, F.
, and Cheng
, L.
, 1999
, “Numerical Model for Local Scour Under Offshore Pipelines
,” J. Hydraul. Eng.
, 125
(4
), pp. 400
–406
.18.
Yang
, J.
, Low
, Y. M.
, Lee
, C.-H.
, and Chiew
, Y.-M.
, 2018
, “Numerical Simulation of Scour Around a Submarine Pipeline Using Computational Fluid Dynamics and Discrete Element Method
,” Appl. Math. Model.
, 55
, pp. 400
–416
.19.
Ajdehak
, E.
, Zhao
, M.
, Cheng
, L.
, and Draper
, S.
, 2018
, “Numerical Investigation of Local Scour Beneath a Sagging Subsea Pipeline in Steady Currents
,” Coastal Eng.
, 136
, pp. 106
–118
.20.
Liu
, M.
, Lu
, L.
, Teng
, B.
, Zhao
, M.
, and Tang
, G.
, 2016
, “Numerical Modeling of Local Scour and Forces for Submarine Pipeline Under Surface Waves
,” Coastal Eng.
, 116
, pp. 275
–288
.21.
Zhao
, M.
, Cheng
, L.
, and An
, H.
, 2012
, “Numerical Investigation of Vortex-Induced Vibration of a Circular Cylinder in Transverse Direction in Oscillatory Flow
,” Ocean Eng.
, 41
, pp. 39
–52
.22.
Li
, X.
, Wang
, Y.
, Li
, G.
, Jiang
, M.
, and He
, X.
, 2011
, “Experimental Investigation of Vortex-Induced Vibrations of Long Free Spans Near Seabed
,” Sci. China Technol. Sci.
, 54
(3
), pp. 698
–704
.23.
Sumer
, B. M.
, and Fredsoe
, J.
, 1994, “Review on Vibrations of Marine Pipelines
,” Fourth International Offshore Polar Engineering Conference, Osaka, Japan, Apr. 10–15, pp. 81–90.https://www.onepetro.org/conferences/ISOPE/ISOPE9424.
Tsahalis
, D. T.
, 1987
, “Vortex-Induced Vibrations Due to Steady and Wave-Induced Currents of a Flexible Cylinder Near a Plane Boundary
,” ASME J. Offshore Mech. Arct. Eng.
, 109
(2
), pp. 112
–118
.25.
Blevins
, R. D.
, and Coughran
, C. S.
, 2009
, “Experimental Investigation of Vortex-Induced Vibration in One and Two Dimensions With Variable Mass, Damping, and Reynolds Number
,” ASME J. Fluids Eng.
, 131
(10
), p. 101202
.26.
Williamson
, C. H. K.
, and Govardhan
, R.
, 2004
, “Vortex-Induced Vibrations
,” Annu. Rev. Fluid Mech.
, 36
(1
), pp. 413
–455
.27.
Zhao
, M.
, and Cheng
, L.
, 2011
, “Numerical Simulation of Two-Degree-of-Freedom Vortex-Induced Vibration of a Circular Cylinder Close to a Plane Boundary
,” J. Fluids Struct.
, 27
(7
), pp. 1097
–1110
.28.
Guilmineau
, E.
, and Queutey
, P.
, 2004
, “Numerical Simulation of Vortex-Induced Vibration of a Circular Cylinder With Low Mass-Damping in a Turbulent Flow
,” J. Fluids Struct.
, 19
(4
), pp. 449
–466
.29.
Sanchis
, A.
, Sælevik
, G.
, and Grue
, J.
, 2008
, “Two-Degree-of-Freedom Vortex-Induced Vibrations of a Spring-Mounted Rigid Cylinder With Low Mass Ratio
,” J. Fluids Struct.
, 24
(6
), pp. 907
–919
.30.
Mittal
, S.
, and Kumar
, V.
, 1999
, “Finite Element Study of Vortex-Induced Cross-Flow and in-Line Oscillations of a Circular Cylinder at Low Reynolds Numbers
,” Int. J. Numer. Methods Fluids
, 31
(7
), pp. 1087
–1120
.31.
Zhao
, M.
, Kaja
, K.
, Xiang
, Y.
, and Yan
, G.
, 2013
, “Vortex-Induced Vibration (VIV) of a Circular Cylinder in Combined Steady and Oscillatory Flow
,” Ocean Eng.
, 73
, pp. 83
–95
.32.
Sumer
, B. M.
, Mao
, Y.
, and Fredsøe
, J.
, 1988
, “Interaction Between Vibrating Pipe and Erodible Bed
,” J. Waterw. Port Coastal Ocean Eng.
, 114
(1
), pp. 81
–92
.33.
Gao
, F.
, Yang
, B.
, Yan
, S.
, and Wu
, Y.
, 2006
, “Physical Modeling of Current-Induced Seabed Scour Around a Vibrating Submarine Pipeline
,” Sixth International Offshore Polar Engineering Conference
, San Francisco, CA, May 28–June 2, pp. 108–112.https://www.onepetro.org/conference-paper/ISOPE-I-06-39334.
Zhao
, M.
, and Cheng
, L.
, 2010
, “Numerical Investigation of Local Scour Below a Vibrating Pipeline Under Steady Currents
,” Coastal Eng.
, 57
(4
), pp. 397
–406
.35.
Li
, M.
, Yu
, H.
, Wang
, J.
, Xia
, X.
, and Chen
, J.
, 2015
, “A Multiscale Coupling Approach Between Discrete Element Method and Finite Difference Method for Dynamic Analysis
,” Int. J. Numer. Methods Eng.
, 102
(1
), pp. 1
–21
.36.
Barkhudarov
, M.
, and Wei
, G.
, 2006
, “Modeling of the Coupled Motion of Rigid Bodies in Liquid Metal
,” Modeling of Casting, Welding, and Advanced Solidification Processes-XI
, Opio, France, May 28–June 2, pp. 71
–78
.37.
Zhang
, Q.
, Zhou
, X. L.
, and Wang
, J. H.
, 2017
, “Numerical Investigation of Local Scour Around Three Adjacent Piles With Different Arrangements Under Current
,” Ocean Eng.
, 142
, pp. 625
–638
.38.
Liao
, C.
, Tong
, D.
, Jeng
, D.-S.
, and Zhao
, H.
, 2018
, “Numerical Study for Wave-Induced Oscillatory Pore Pressures and Liquefaction Around Impermeable Slope Breakwater Heads
,” Ocean Eng.
, 157
, pp. 364
–375
.39.
Liao
, C.
, Tong
, D.
, and Chen
, L.
, 2018
, “Pore Pressure Distribution and Momentary Liquefaction in Vicinity of Impermeable Slope-Type Breakwater Head
,” Appl. Ocean Res.
, 78
, pp. 290
–306
.40.
Yakhot
, V.
, and Smith
, L. M.
, 1992
, “The Renormalization Group, the E-Expansion and Derivation of Turbulence Models
,” J. Sci. Comput.
, 7
(1
), pp. 35
–61
.41.
Yakhot
, V.
, and Orszag
, S. A.
, 1986
, “Renormalization Group Analysis of Turbulence—I: Basic Theory
,” J. Sci. Comput.
, 1
(1
), pp. 3
–51
.42.
Mastbergen
, D. R.
, and Van Den Berg
, J. H.
, 2003
, “Breaching in Fine Sands and the Generation of Sustained Turbidity Currents in Submarine Canyons
,” Sedimentology
, 50
(4
), pp. 625
–637
.43.
Soulsby
, R.
, 1997
, Dynamics of Marine Sands
, Thomas Thelford
, London.44.
van Rijn
, L.
, 1984
, “Sediment Transport—Part I: Bed Load Transport
,” J. Hydraul. Eng.
, 110
(10
), pp. 1431
–1456
.45.
Hirt
, C. W.
, and Nichols
, B. D.
, 1981
, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,” J. Comput. Phys.
, 39
(1
), pp. 201
–225
.46.
Liang
, D.
, Cheng
, L.
, and Li
, F.
, 2005
, “Numerical Modeling of Flow and Scour Below a Pipeline in Currents—Part II: Scour Simulation
,” Coastal Eng.
, 52
(1
), pp. 43
–62
.47.
Yang
, B.
, Gao
, F. P.
, Jeng
, D. S.
, and Wu
, Y. X.
, 2008
, “Experimental Study of Vortex-Induced Vibrations of a Pipeline Near an Erodible Sandy Seabed
,” Ocean Eng.
, 35
(3–4
), pp. 301
–309
.48.
Govardhan
, R.
, and Williamson
, C. H. K.
, 2000
, “Modes of Vortex Formation and Frequency Response of a Freely Vibrating Cylinder
,” J. Fluid Mech.
, 420
(420
), pp. 85
–130
.49.
Fredso̸e
, J.
, Sumer
, B. M.
, Andersen
, J.
, and Hansen
, E. A.
, 1987
, “Transverse Vibrations of a Cylinder Very Close to a Plane Wall
,” ASME J. Offshore Mech. Arct. Eng.
, 109
(1
), pp. 52
–60
.50.
Khalak
, A.
, and Williamson
, C. H. K.
, 1996
, “Dynamics of a Hydroelastic Cylinder With Very Low Mass and Damping
,” J. Fluids Struct.
, 10
(5
), pp. 455
–472
.Copyright © 2019 by ASME
You do not currently have access to this content.