The duck's webbed feet are observed by using electron microscopy, and observations indicate that the edges of the webbed feet are the shape of protuberances. Therefore, the rudder with leading-edge protuberances is numerically studied in the present investigation. The rudder has a sinusoidal leading-edge profile along the spanwise direction. The hydrodynamic performance of rudder is analyzed under the influence of leading-edge protuberances. The present investigations are carried out at Re = 3.2 × 105 and 8 × 105. In the case of Re = 3.2 × 105, the curves of lift coefficient illustrate that the protuberant leading-edge scarcely affects the lift coefficient of bionic rudder. However, the drag coefficient of the bionic rudder is markedly lower than that of the unmodified rudder. Therefore, the lift-to-drag ratio of the bionic rudder is obviously higher than the unmodified rudder. In another case of Re = 8 × 105, the advantageous behavior of the bionic rudder with leading-edge protuberances is mainly performed in the post-stall regime. The flow mechanism of the significantly increased efficiency by the protuberant leading-edge is explored. It is obvious that the pairs of counter-rotating vortices are presented over the suction surface of bionic rudder, and therefore, the flow is more likely to adhere to the suction surface of bionic rudder.

References

1.
Fish
,
F. E.
, and
Battle
,
J. M.
,
1995
, “
Hydrodynamic Design of the Humpback Whale Flipper
,”
J. Morphol.
,
225
(
1
), pp.
51
60
.
2.
Fish
,
F. E.
,
Weber
,
P. W.
,
Murray
,
M. M.
, and
Howle
,
L. E.
,
2011
, “
The Tubercles on Humpback Whales’ Flippers: Application of Bio-Inspired Technology
,”
Integr. Comp. Biol.
,
51
(
1
), pp.
203
213
.
3.
Miklosovic
,
D. S.
,
Murray
,
M. M.
,
Howle
,
L. E.
, and
Fish
,
F. E.
,
2004
, “
Leading-Edge Tubercles Delay Stall on Humpback Whale (Megaptera Novaeangliae) Flippers
,”
Phys. Fluids
,
16
(
5
), pp.
L39
L42
.
4.
Miklosovic
,
D. S.
,
Murray
,
M. M.
, and
Howle
,
L. E.
,
2007
, “
Experimental Evaluation of Sinusoidal Leading Edges
,”
J. Aircr.
,
44
(
4
), pp.
1404
1408
.
5.
Custodio
,
D.
,
2007
, “
The Effect of Humpback Whale-Like Leading Edge Protuberances on Hydrofoil Performance
,” Masters thesis,
Worcester Polytechnic Institute
,
Worcester, MA
.
6.
Rostamzadeh
,
N.
,
Kelso
,
R. M.
,
Dally
,
B. B.
, and
Hansen
,
K. L.
,
2013
, “
The Effect of Undulating Leading-Edge Modifications on NACA 0021 Airfoil Characteristics
,”
Phys. Fluids
,
25
(
11
), p.
117101
.
7.
Rostamzadeh
,
N.
,
Hansen
,
K. L.
,
Kelso
,
R. M.
, and
Dally
,
B. B.
,
2014
, “
The Formation Mechanism and Impact of Streamwise Vortices on NACA 0021 Airfoil's Performance With Undulating Leading Edge Modification
,”
Phys. Fluids
,
26
(
10
), p.
107101
.
8.
Rostamzadeh
,
N.
,
Kelso
,
R. M.
, and
Dally
,
B. B.
,
2017
, “
A Numerical Investigation Into the Effects of Reynolds Number on the Flow Mechanism Induced by a Tubercled Leading Edge
,”
Theor. Comput. Fluid Dyn.
,
31
(
1
), pp.
1
32
.
9.
Zhang
,
M. M.
,
Wang
,
G. F.
, and
Xu
,
J. Z.
,
2013
, “
Aerodynamic Control of Low-Reynolds-Number Airfoil With Leading-Edge Protuberances
,”
AIAA J.
,
51
(
8
), pp.
1960
1971
.
10.
Malipeddi
,
A. K.
,
Mahmoudnejad
,
N.
, and
Hoffmann
,
K. A.
,
2012
, “
Numerical Analysis of Effects of Leading-Edge Protuberances on Aircraft Wing Performance
,”
J. Aircr.
,
49
(
5
), pp.
1336
1344
.
11.
Johari
,
H.
,
Henoch
,
C.
,
Custodio
,
D.
, and
Levshin
,
A.
,
2007
, “
Effects of Leading-Edge Protuberances on Airfoil Performance
,”
AIAA J.
,
45
(
11
), pp.
2634
2642
.
12.
Custodio
,
D.
,
Henoch
,
C. W.
, and
Johari
,
H.
,
2015
, “
Aerodynamic Characteristics of Finite Span Wings With Leading-Edge Protuberances
,”
AIAA J.
,
53
(
7
), pp.
1878
1893
.
13.
Hansen
,
K. L.
,
Rostamzadeh
,
N.
, and
Kelso
,
R. M.
,
2016
, “
Evolution of the Streamwise Vortices Generated Between Leading Edge Tubercles
,”
J. Fluid Mech.
,
788
, pp.
730
766
.
14.
Hansen
,
K. L.
,
Kelso
,
R. M.
, and
Dally
,
B. B.
,
2011
, “
Performance Variations of Leading-Edge Tubercles for Distinct Airfoil Profiles
,”
AIAA J.
,
49
(
1
), pp.
185
194
.
15.
Yoon
,
H. S.
,
Hung
,
P. A.
,
Jung
,
J. H.
, and
Kim
,
M. C.
,
2011
, “
Effect of the Wavy Leading Edge on Hydrodynamic Characteristics for Flow Around Low Aspect Ratio Wing
,”
Comput. Fluids
,
49
(
1
), pp.
276
289
.
16.
Favier
,
J.
,
Pinelli
,
A.
, and
Piomelli
,
U.
,
2012
, “
Control of the Separated Flow Around an Airfoil Using a Wavy Leading Edge Inspired by Humpback Whale Flippers
,”
C. R. Mec.
,
340
(
1–2
), pp.
107
114
.
17.
Cai
,
C.
,
Zuo
,
Z. G.
,
Liu
,
S. H.
, and
Wu
,
Y. L.
,
2015
, “
Numerical Investigations of Hydrodynamic Performance of Hydrofoils With Leading-Edge Protuberances
,”
Adv. Mech. Eng.
,
7
(
7
), pp.
1
11
.
18.
Aftab
,
S. M. A.
,
Razak
,
N. A.
,
Mohd Rafie
,
A. S.
, and
Ahmad
,
K. A.
,
2016
, “
Mimicking the Humpback Whale: An Aerodynamic Perspective
,”
Prog. Aerosp. Sci.
,
84
, pp.
48
69
.
19.
Shi
,
W. C.
,
Atlar
,
M.
,
Rosli
,
R.
,
Aktas
,
B.
, and
Norman
,
R.
,
2016
, “
Cavitation Observations and Noise Measurements of Horizontal Axis Tidal Turbines With Biomimetic Blade Leading-Edge Designs
,”
Ocean Eng.
,
121
, pp.
143
155
.
20.
Shi
,
W. C.
,
Atlar
,
M.
,
Norman
,
R.
,
Aktas
,
B.
, and
Turkmen
,
S.
,
2016
, “
Numerical Optimization and Experimental Validation for a Tidal Turbine Blade With Leading-Edge Tubercles
,”
Renew. Energy
,
96
, pp.
42
55
.
21.
Weber
,
P. W.
,
Howle
,
L. E.
, and
Murray
,
M. M.
,
2010
, “
Lift, Drag, and Cavitation Onset on Rudders With Leading-Edge Tubercles
,”
Mar. Technol.
,
47
(
1
), pp.
27
36
.
22.
Johansson
,
L. C.
, and
Norberg
,
R. Å.
,
2003
, “
Delta-Wing Function of Webbed Feet Gives Hydrodynamic Lift for Swimming Propulsion in Birds
,”
Nature
,
424
(
6944
), pp.
65
68
.
23.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
24.
Douvi
,
C. E.
,
Tsavalos
,
I. A.
, and
Margaris
,
P. D.
,
2012
, “
Evaluation of the Turbulence Models for the Simulation of the Flow Over a National Advisory Committee for Aeronautics (NACA) 0012 Airfoil
,”
J. Mech. Eng. Res.
,
4
(
3
), pp.
100
111
.
25.
Zhu
,
Z. F.
,
Zhou
,
F.
, and
Li
,
D.
,
2017
, “
Numerical Prediction of Tip Vortex Cavitation for Marine Propellers in Non-Uniform Wake
,”
Chin. J. Mech. Eng.
,
30
(
4
), pp.
804
818
.
26.
Rhee
,
S. H.
, and
Kim
,
H.
,
2008
, “
A Suggestion of Gap Flow Control Devices for the Suppression of Rudder Cavitation
,”
J. Mar. Sci. Technol.
,
13
(
4
), pp.
356
370
.
27.
Zhu
,
J.
,
Wang
,
B.
,
Bi
,
Y.
, and
Ling
,
G.
,
1999
, “
Open Water Test of Performance of Becker Flap-Rudder
,”
Ship Build. China
,
145
(
2
), pp.
21
26
.
28.
Wei
,
Z. Y.
,
New
,
T. H.
, and
Cui
,
Y. D.
,
2015
, “
An Experimental Study on Flow Separation Control of Hydrofoils With Leading-Edge Tubercles at Low Reynolds Number
,”
Ocean Eng.
,
108
, pp.
336
349
.
You do not currently have access to this content.