Abstract

Exploration of oil and gas in deep and ultra-deepwater under harsh weather condition is challenging. A steel lazy wave riser (SLWR) is considered to be a cost-effective alternative to get the gas or oil flow up to the platform under these conditions. The staggered buoyant section provides buoyancy force which forms an arch shape of the SLWR. This arch shape makes the SLWR configuration flexible and isolates the dynamic responses of the upper part and lower part of the riser. However, there is a lack of full understanding of the behavior of SLWRs. This is, due to a complicated loading from waves, vessel motions and flow induced vibrations caused by ocean currents, complex structural configurations, and non-linearities. Time-domain simulation is necessary to accurately predict the dynamic responses and capture the non-linearities. Realistic fatigue damage calculation is essential in the design phase of SLWR. The design of SLWR could be optimized with a better understanding of the dynamic responses of SLWR.

References

References
1.
Koch
,
S.
,
Barker
,
J.
, and
Vermersch
,
J.
,
1991
, “
The Gulf of Mexico Loop Current and Deepwater Drilling
,”
SPE-20434-PA
.
2.
Blackman
,
S.
,
2012
, “
Risky Business: Challenges of Deepwater Drilling in the North Sea
,” www.offshore-technology.com,
June
. http://www.abc.edu
3.
Cao
,
P.
, and
Cheng
,
J.
,
2013
, “
Design of Steel Lazy Wave Riser for Disconnectable FPSO
,”
Offshore Technology Conference, Offshore Technology Conference
,
OTC-24166-MS
.
4.
Felisita
,
A.
,
Gudmestad
,
O. T.
,
Karunakaran
,
D.
, and
Martinsen
,
L. O.
,
2016
, “
Review of Steel Lazy Wave Riser Concepts for the North Sea
,”
ASME J. Offshore. Mech. Arct. Eng.
,
139
(
1
), p.
011702
. 10.1115/1.4034822
5.
De Andrade
,
E. Q.
,
de Aguiar
,
L. L.
,
Senra
,
S. F.
,
Siqueira
,
E. F. N.
,
Torres
,
A. L. F. L.
, and
Mourelle
,
M. M.
,
2010
, “
Optimization Procedure of Steel Lazy Wave Riser Configuration for Spread Moored FPSOs in Deepwater Offshore Brazil
,”
Offshore Technology Conference
,
OTC-20777-MS
.
6.
Shanharan
,
R.
,
Anaturk
,
A.
,
Howells
,
H.
, and
Lopes
,
M.
,
2017
, “
Feasibility of Steel Lazy Wave Risers in the North Sea
,”
MCD Deepwater Development
,
Addison-Wesley
.
7.
Yin
,
D.
,
Wu
,
J.
,
Lie
,
H.
,
Baarholm
,
R.
, and
Larsen
,
C. M.
,
2015
, “
VIV Prediction of Steel Catenary Riser—A Reynolds Number Sensitivity Study
,”
Proceedings of the Twenty-Fifth (2015) International Ocean and Polar Engineering Conference
, Vol.
3
, pp.
1018
1027
.
8.
Yin
,
D.
,
Lie
,
H.
, and
Baarholm
,
R. J.
,
2018
, “
Prototype Reynolds Number VIV Tests on a Full-Scale Rigid Riser
,”
ASME J. Offshore Mech. Arct. Eng.
,
140
(
1
), p.
011702
. 10.1115/1.4037538
9.
Wang
,
J.
,
Fu
,
S.
,
Larsen
,
C. M.
,
Baarholm
,
R.
,
Wu
,
J.
, and
Lie
,
H.
,
2017
, “
Dominant Parameters for Vortex-Induced Vibration of a Steel Catenary Riser Under Vessel Motion
,”
Ocean Eng.
,
136
, pp.
260
271
. 10.1016/j.oceaneng.2017.03.015
10.
Constantinides
,
Y.
,
Cao
,
P.
,
Cheng
,
J.
,
Fu
,
S.
, and
Kusinski
,
G.
,
2016
, “
Steel Lazy Wave Riser Tests in Harsh Offshore Environment
,”
ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
,
no. OMAE2016-54970
.
11.
Wu
,
J.
,
Lie
,
H.
,
Constantinides
,
Y.
, and
Baarholm
,
R.
,
2016
, “
NDP Riser VIV Model Test With Staggered Buoyancy Elements
,”
ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
, Vol.
2
, p.
V002T08A036
.
12.
Fu
,
S.
,
Wu
,
J.
,
Lie
,
H.
, and
Baarholm
,
R.
,
2017
, “
Hydrodynamic Coefficients of a Flexible Pipe With Staggered Buoyancy Elements and Strakes Under VIV Conditions
,”
ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
, Vol.
2
, p.
V002T08A044
.
13.
Zhang
,
M.
,
Fu
,
S.
,
Song
,
L.
,
Wu
,
J.
,
Lie
,
H.
, and
Ren
,
H.
,
2017
, “
Hydrodynamics of Flexible Pipe With Staggered Buoyancy Elements Undergoing Vortex-Induced Vibrations
,”
ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
, Vol.
2
, p.
V002T08A030
.
14.
Wu
,
J.
,
Lie
,
H.
,
Fu
,
S.
,
Baarholm
,
R.
, and
Constantinides
,
Y.
,
2017
, “
VIV Responses of Riser With Buoyancy Elements: Forced Motion Test and Numerical Prediction
,”
ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
, Vol.
2
, p.
V002T08A013
.
15.
Wang
,
J.
, and
Duan
,
M.
,
2015
, “
A Nonlinear Model for Deepwater Steel Lazy-wave Riser Configuration with Ocean Current and Internal Flow
,”
Ocean Eng.
,
94
, pp.
155
162
. 10.1016/j.oceaneng.2014.11.025
16.
Wang
,
J.
,
Duan
,
M.
, and
Luo
,
J.
,
2015
, “
Mathematical Model of Steel Lazy-Wave Riser Abandonment and Recovery in Deepwater
,”
Mar. Struct.
,
41
, pp.
127
153
. 10.1016/j.marstruc.2015.02.002
17.
Thorsen
,
M.
,
Sævik
,
S.
, and
Larsen
,
C.
,
2014
, “
A Simplified Method for Time Domain Simulation of Cross-Flow Vortex-Induced Vibrations
,”
J. Fluid Struct.
,
49
, pp.
135
148
. 10.1016/j.jfluidstructs.2014.04.006
18.
Thorsen
,
M.
,
Sævik
,
S.
, and
Larsen
,
C.
,
2016
, “
Time Domain Simulation of Vortex-Induced Vibrations in Stationary and Oscillating Flows
,”
J. Fluid Struct.
,
61
, pp.
1
19
. 10.1016/j.jfluidstructs.2015.11.006
19.
Yin
,
D.
,
Lie
,
H.
, and
Wu
,
J.
,
2018
, “
Steel Lazy Wave Riser—A Deepwater Solution,” NPF Offshore Pipelines & Risers Conference
, Trondheim,
Norway
.
20.
Hariharan
,
M.
,
Lazy Wave SCRs: The 4 Biggest Design Challenges and How to Address Them.
www.2hoffshore.com.
21.
Wang
,
J.
,
Fu
,
S.
,
Baarholm
,
R.
,
Wu
,
J.
, and
Larsen
,
C. M.
,
2015
, “
Out-of-Plane Vortex-Induced Vibration of a Steel Catenary Riser Caused by Vessel Motions
,”
Ocean Eng.
,
109
, pp.
389
400
. 10.1016/j.oceaneng.2015.09.004
22.
Zimmermann
,
C.-A.
,
Petruska
,
D.
, and
Duggal
,
A. S.
,
2002
, “
Effective Riser Solutions for a Deepwater FPSO
,”
ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering
,
no. OMAE2002/OFT-28376
, pp.
667
677
.
23.
Jhingran
,
V.
,
Zhang
,
H.
,
Lie
,
H.
,
Braaten
,
H.
, and
Vandiver
,
J. K.
,
2012
, “
Buoyancy Spacing Implications for Fatigue Damage due to Vortex-Induced Vibrations on a Steel Lazy Wave Riser (SLWR)
,”
Offshore Technology Conference
,
no. OTC-23672-MS
.
24.
Lejlic
,
E.
,
2013
, “
Vortex Induced Fatigue Damage of a Steel Catenary Riser near the Touch Down Point
,”
Master’s thesis
,
Norwegian University of Science and Technology
.
25.
DNVGL
,
DNVGL-RP-F114 Pipe-Soil Interaction for Submarine Pipelines
.
26.
Bridge
,
C.
,
Laver
,
K.
,
Clukey
,
E.
, and
Evans
,
T.
,
2004
, “
Steel Catenary Riser Touchdown Point Vertical Interaction Models
,”
Offshore Technology Conference
.
27.
Det Norske Veritas
,
2009
,
DNV-RP-C205 Environmental Conditions and Environmental Loads
.
28.
Lie
,
H.
,
Mo
,
K.
, and
Vandiver
,
J. K.
,
1998
, “
VIV Model Test of a Bare- and a Staggered Buoyancy Riser in a Rotating Rig
,”
Offshore Technology Conference
,
no. OTC8700
.
29.
Det Norske Veritas
,
2010
,
DNV-OS-F201 Dynamic Risers
.
30.
Øritsland
,
O.
,
1991
,
Handbook of Hydrodynamic Coefficients of Flexible Risers
,
FPS2000/Flexible Risers and Pipes. Report 2.1-16. Marintek Report no. 511201.00.05, Trondheim, Norway
.
31.
Swithenbank
,
S. B.
,
Vandiver
,
J. K.
,
Larsen
,
C. M.
, and
Lie
,
H.
,
2008
, “
Reynolds Number Dependence of Flexible Cylinder VIV Response Data
,”
ASME 2008 27th International Conference on Ocean, Offshore and Arctic Engineering
,
Estoril, Portugal
,
June 15–20
, Vol.
5
, pp.
503
511
.
32.
Lie
,
H.
,
Szwalek
,
J. L.
,
Russo
,
M.
,
Braaten
,
H.
, and
Baarholm
,
R. J.
,
2013
, “
Drilling riser VIV tests with prototype Reynolds numbers
,”
ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering
,
Nantes, France
,
June 9–14
, Vol.
7
, p.
V007T08A086
.
33.
Allen
,
D. W.
, and
Liu
,
N.
,
2017
, “
Viv Suppression Device Development and the Perils of Reynolds Number
,”
ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
,
Trondheim, Norway
,
June 25–30
,
Paper No. OMAE2017-62690
.
34.
Ortega
,
A.
,
Rivera
,
A.
,
Nydal
,
O. J.
, and
Larsen
,
C. M.
,
2012
, “
On the Dynamic Response of Flexible Risers Caused by Internal Slug Flow
,”
ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering
,
Rio de Janeiro, Brazil
,
July 1–6
, pp.
647
656
.
35.
Ortega
,
A.
,
Ausberto
,
A. R.
, and
Larsen
,
C. M.
,
2017
, “
Slug Flow and Waves Induced Motions in Flexible Riser
,”
ASME J. Offshore Mech. Arct. Eng.
,
140
(
1
), p.
011703
.
36.
Det Norske Veritas
,
2005
,
DNV-RP-F204 Riser Fatigue
.
37.
Sauder
,
T.
,
Marelli
,
S.
,
Larsen
,
K.
, and
Sørensen
,
A. J.
,
2018
, “
Active Truncation of Slender Marine Structures: Influence of the Control System on Fidelity
,”
Appl. Ocean Res.
,
74
, pp.
154
169
. 10.1016/j.apor.2018.02.023
38.
Gopalkrishnan
,
R.
,
1993
, “
Vortex-Induced Forces on Oscillating Bluff Cylinders
,”
PhD thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
39.
Trim
,
A.
,
Braaten
,
H.
,
Lie
,
H.
, and
Tognarelli
,
M.
,
2005
, “
Experimental Investigation of Vortex-Induced Vibration of Long Marine Risers
,”
J. Fluids Struct.
,
21
(
3
), pp.
335
361
. 10.1016/j.jfluidstructs.2005.07.014
40.
Vandiver
,
J. K.
, and
Resvanis
,
T. L.
,
2015
, “
Improving the State of the Art of High Reynolds Number viv Model Testing of Ocean Risers
,”
Technical Report
,
Massachusets Institute of Technology
.
41.
Ding
,
Z. J.
,
Balasubramanian
,
S.
,
Lokken
,
R. T.
, and
Yung
,
T. -W.
,
2004
, “
Lift and Damping Characteristics of Bare and Straked Cylinders at Riser Scale Reynolds Numbers
,”
Offshore Technology Conference
,
no. OTC-16341-MS
.
42.
Dahl
,
J. M.
,
Hover
,
F. S.
,
Triantafyllou
,
M. S.
, and
Oakley
,
O. H.
,
2010
, “
Dual Resonance in Vortex-Induced Vibrations at Subcritical and Supercritical Reynolds Numbers
,”
J. Fluid Mech.
,
643
, pp.
395
424
. 10.1017/S0022112009992060
43.
Wu
,
J.
,
Yin
,
D.
,
Lie
,
H.
,
Gill
,
A.
,
Bakewell
,
B.
, and
Stahl
,
M.
,
2019
, “
Full-Scale VIV Test of Buoyancy Elements with Hexagonal Grooves
,”
ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering
,
no. OMAE2019-96825
.
44.
Gaskill
,
C.
,
Wu
,
J.
, and
Yin
,
D.
,
2018
, “
Full-Scale Reynolds Number VIV Testing of Tri-Helically Grooved Drill Riser Buoyancy Module
,”
ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering
,
Madrid, Spain
,
June 17–22
, Vol.
2
, p.
V002T08A063
.
45.
Thorsen
,
M.
,
Sævik
,
S.
, and
Larsen
,
C.
,
2017
, “
Non-Linear Time Domain Analysis of Cross-Flow Vortex-Induced Vibrations
,”
Mar. Struct.
,
51
, pp.
134
151
. 10.1016/j.marstruc.2016.10.007
46.
SINTEF Ocean
,
2017
,
RIFLEX 4.10.0 Theory Manual.
Trondheim
,
Norway
.
47.
Faltinsen
,
O. M.
,
1993
,
Sea Loads on Ships and Offshore Structures
,
Cambridge University Press
,
Cambridge
.
48.
Ulveseter
,
J.
,
Sævik
,
S.
, and
Larsen
,
C.
,
2017
, “
Time Domain Model for Calculation of Pure In-Line Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
68
, pp.
158
173
. 10.1016/j.jfluidstructs.2016.10.013
49.
Holmes
,
S.
, and
Constantinides
,
Y.
,
2014
, “
CFD Modeling of Long Risers With Buoyancy Modules and Complex Shapes
,”
ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering
,
San Francisco, CA
,
June 8–13
, p.
V002T08A083
.
50.
Constantinides
,
Y.
,
Stover
,
M.
,
Steele
,
A.
, and
Santala
,
M.
,
2016
, “
CFD Modeling and Validation of Steel Lazy-Wave Riser VIV
,”
Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
,
Busan, South Korea
,
June 19– 24
.
You do not currently have access to this content.