Abstract

The single-moored light buoys employed in the lower reaches of the Yangtze River play an important role in indicating ship navigation and ensuring safety. To clarify the interaction between waves and floating buoys moored to the riverbed, this paper applies a numerical approach to investigate the wave-induced motion performance of a light buoy and reveal the effects of different mooring configurations to extend its service life. An open-source smoothed particle hydrodynamics (SPH)-based numerical model named dualsphysics coupled with MoorDyn is implemented. This coupled model is validated by simulating the motion of a moored rectangle buoy in regular waves, and compared with experimental data and the numerical results of reef3d code, a mesh-based computational fluid dynamics (CFD) model. The validation results show that the coupled model reproduces experimental data well and has a smaller deviation in comparison with reef3d. Then, the coupling model is applied to simulate the hydrodynamic performance of the real-size light buoy employed in Yangtze River and investigate the effects of encounter angle between wave propagation direction and mooring chain. The results demonstrate the capability of this coupled mooring model to simulate the motion of a moored buoy in regular waves, and this numerical approach will be extended to simulate the light buoy in more complex environments such as irregular waves, flow or extreme weather in further work.

References

1.
Jeong
,
S. M.
,
Son
,
B. H.
, and
Lee
,
C. Y.
,
2020
, “
Estimation of the Motion Performance of a Light Buoy Adopting Ecofriendly and Lightweight Materials in Waves
,”
J. Mar. Sci. Eng.
,
8
(
2
), p.
139
.
2.
Gu
,
H.
,
Stansby
,
P.
,
Stallard
,
T.
, and
Carpintero Moreno
,
E.
,
2018
, “
Drag, Added Mass and Radiation Damping of Oscillating Vertical Cylindrical Bodies in Heave and Surge in Still Water
,”
J. Fluids Struct.
,
82
(
1
), pp.
343
356
.
3.
Qu
,
K.
,
Sun
,
W. Y.
,
Kraatz
,
S.
,
Deng
,
B.
, and
Jiang
,
C. B.
,
2020
, “
Effects of Floating Breakwater on Hydrodynamic Load of Low-Lying Bridge Deck Under Impact of Cnoidal Wave
,”
Ocean Eng.
,
203
.
4.
Martin
,
T.
,
Kamath
,
A.
, and
Bihs
,
H.
,
2020
, “
Modeling and Simulation of Moored-Floating Structures Using the Tension Element Method
,”
ASME J. Offshore Mech. Arct. Eng.
,
142
(
1
), p.
011803
.
5.
Ren
,
B.
,
He
,
M.
,
Dong
,
P.
, and
Wen
,
H.
,
2015
, “
Nonlinear Simulations of Wave-Induced Motions of a Freely Floating Body Using WCSPH Method
,”
Appl. Ocean Res.
,
50
, pp.
1
12
.
6.
Altomare
,
C.
, and
Suzuki
,
T.
,
2016
, “
SPH Model to Simulate Oscillating Water Column Wave Energy Converter
,”
11th International Spheric Workshop 2016
,
Munich, Germany
,
June 14–16
, pp.
1
8
.
7.
Liu
,
Z.
, and
Wang
,
Y.
,
2020
, “
Numerical Investigations and Optimizations of Typical Submerged Box-Type Floating Breakwaters Using SPH
,”
Ocean Eng.
,
209
, p.
107475
.
8.
Aller
,
A. B.
,
2015
, “
Smoothed Particle Hydrodynamics Model for Civil and Coastal Engineering Applications
,”
Doctoral thesis, Universidade de Vigo
,
Spain
.
9.
Sundaravadivelu
,
R.
,
Harikrishna Babu
,
M.
, and
Murugaganesh
,
R.
,
1991
, “
Experimental Investigation on a Single Point Buoy Mooring System
,”
Ocean Eng.
,
18
(
5
), pp.
405
417
.
10.
Ji
,
C. Y.
,
Chen
,
X.
,
Cui
,
J.
,
Gaidai
,
O.
, and
Incecik
,
A.
,
2016
, “
Experimental Study on Configuration Optimization of Floating Breakwaters
,”
Ocean Eng.
,
117
, pp.
302
310
.
11.
Hsu
,
W. Y.
,
Chuang
,
T. C.
,
Yang
,
R. Y.
,
Hsu
,
W. T.
, and
Thiagarajan
,
K. P.
,
2019
, “
An Experimental Study of Mooring Line Damping and Snap Load in Shallow Water
,”
ASME J. Offshore Mech. Arct. Eng.
,
141
(
5
), p.
051603
.
12.
Moura Paredes
,
G.
,
Palm
,
J.
,
Eskilsson
,
C.
,
Bergdahl
,
L.
, and
Taveira-Pinto
,
F.
,
2016
, “
Experimental Investigation of Mooring Configurations for Wave Energy Converters
,”
Int. J. Mar. Energy
,
15
, pp.
56
67
.
13.
Barrera
,
C.
,
Guanche
,
R.
, and
Losada
,
I. J.
,
2019
, “
Experimental Modelling of Mooring Systems for Floating Marine Energy Concepts
,”
Mar. Struct.
,
63
, pp.
153
180
.
14.
Davidson
,
J.
, and
Ringwood
,
J. V.
,
2017
, “
Mathematical Modelling of Mooring Systems for Wave Energy Converters—A Review
,”
Energies
,
10
(
5
), p.
666
.
15.
Guo
,
Z.
,
Wang
,
L.
, and
Yuan
,
F.
,
2016
, “
Quasi-Static Analysis of the Multicomponent Mooring Line for Deeply Embedded Anchors
,”
ASME J. Offshore Mech. Arct. Eng.
,
138
(
1
), p.
011302
.
16.
Crespo
,
A. J. C.
,
Domínguez
,
J. M.
,
Rogers
,
B. D.
,
Gómez-Gesteira
,
M.
,
Longshaw
,
S.
,
Canelas
,
R.
,
Vacondio
,
R.
,
Barreiro
,
A.
, and
García-Feal
,
O.
,
2015
, “
DualSPHysics: Open-Source Parallel CFD Solver Based on Smoothed Particle Hydrodynamics (SPH)
,”
Comput. Phys. Commun.
,
187
, pp.
204
216
.
17.
Alonso
,
J. M. D.
,
2014
, “
DualSPHysics : Towards High Performance Computing Using SPH Technique
,”
Doctoral thesis, Universidade de Vigo
,
Spain
.
18.
Altomare
,
C.
,
Domínguez
,
J. M.
,
Crespo
,
A. J. C.
,
González-Cao
,
J.
,
Suzuki
,
T.
,
Gómez-Gesteira
,
M.
, and
Troch
,
P.
,
2017
, “
Long-Crested Wave Generation and Absorption for SPH-Based DualSPHysics Model
,”
Coastal Eng.
,
127
(
Aug.
), pp.
37
54
.
19.
Altomare
,
C.
,
Tafuni
,
A.
,
Domínguez
,
J. M.
,
Crespo
,
A. J. C.
,
Gironella
,
X.
, and
Sospedra
,
J.
,
2020
, “
SPH Simulations of Real Sea Waves Impacting a Large-Scale Structure
,”
J. Mar. Sci. Eng.
,
8
(
10
), pp.
1
21
.
20.
Violeau
,
D.
, and
Rogers
,
B. D.
,
2016
, “
Smoothed Particle Hydrodynamics (SPH) for Free-Surface Flows: Past, Present and Future
,”
J. Hydraul. Res.
,
54
(
1
), pp.
1
26
.
21.
Fourtakas
,
G.
,
Dominguez
,
J. M.
,
Vacondio
,
R.
, and
Rogers
,
B. D.
,
2019
, “
Local Uniform Stencil (LUST) Boundary Condition for Arbitrary 3-D Boundaries in Parallel Smoothed Particle Hydrodynamics (SPH) Models
,”
Comput. Fluids
,
190
, pp.
346
361
.
22.
Fourtakas
,
G.
,
2014
, “
Modelling Multi-Phase Flows in Nuclear Decommissioning Using SPH School of Mechanical, Aerospace and Civil Engineering
,” Doctoral thesis, University of Manchester, UK.
23.
Monaghan
,
J. J.
,
1992
, “
Smoothed Particle Hydrodynamics
,”
Annu. Rev. Astron. Astrophys.
,
30
(
1
), pp.
543
574
.
24.
Batchelor
,
G. K.
,
1974
,
An Introduction to Fluid Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
25.
Leimkuhler
,
B. J.
, and
Matthews
,
C.
,
2016
,
Molecular Dynamics
,
Springer International PU
,
Switzerland
.
26.
Hall
,
M.
,
2017
, “
Efficient Modelling of Seabed Friction and Multi-Floater Mooring Systems in MoorDyn
,”
Proceedings of the 12th European Wave and Tidal Energy Conference
,
Cork, Ireland
,
Aug.
, Vol. 27.
27.
Crespo
,
A. J. C.
,
Gómez-Gesteira
,
M.
, and
Dalrymple
,
R. A.
,
2007
, “
Boundary Conditions Generated by Dynamic Particles in SPH Methods
,”
Comput. Mater. Contin.
,
5
(
3
), pp.
173
184
.
28.
Bouscasse
,
B.
,
Colagrossi
,
A.
,
Marrone
,
S.
, and
Antuono
,
M.
,
2013
, “
Nonlinear Water Wave Interaction with Floating Bodies in SPH
,”
J. Fluids Struct.
,
42
, pp.
112
129
.
29.
Hadžić
,
I.
,
Hennig
,
J.
,
Perić
,
M.
, and
Xing-Kaeding
,
Y.
,
2005
, “
Computation of Flow-Induced Motion of Floating Bodies
,”
Appl. Math. Modell.
,
29
(
12
), pp.
1196
1210
.
30.
Hall
,
M.
, and
Goupee
,
A.
,
2015
, “
Validation of a Lumped-Mass Mooring Line Model with DeepCwind Semisubmersible Model Test Data
,”
Ocean Eng.
,
104
, pp.
590
603
.
31.
van der Vorst
,
H. A.
,
1992
, “
BiCGStab: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems
,”
SIAM J. Sci. Stat. Comput.
,
13
(
2
), pp.
631
644
.
32.
Shu
,
C.
, and
Osher
,
S.
,
1988
, “
Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes
,”
J. Comput. Phys.
,
77
(
2
), pp.
439
471
.
33.
Berthelsen
,
P. A.
, and
Faltinsen
,
O. M.
,
2008
, “
A Local Directional Ghost Cell Approach for Incompressible Viscous Flow Problems with Irregular Boundaries
,”
J. Comput. Phys.
,
227
(
9
), pp.
4354
4397
.
34.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
,
1994
, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow
,”
J. Comput. Phys.
,
114
(
1
), pp.
146
159
.
35.
Dempwolff
,
L.-C.
,
2019
, “
Experimental and Numerical Investigation of A Moored Floating Structure in Waves
,”
Master thesis, Norwegian University of Science and Technology
,
Norway
.
36.
Martin
,
T.
,
Kamath
,
A.
, and
Bihs
,
H.
,
2021
, “
Accurate Modeling of the Interaction of Constrained Floating Structures and Complex Free Surfaces Using a New Quasistatic Mooring Model
,”
Int. J. Numer. Methods Fluids
,
93
(
2
), pp.
504
526
.
37.
Domínguez
,
J. M.
,
Crespo
,
A. J. C.
,
Hall
,
M.
,
Altomare
,
C.
,
Wu
,
M.
,
Stratigaki
,
V.
,
Troch
,
P.
,
Cappietti
,
L.
, and
Gómez-Gesteira
,
M.
,
2019
, “
SPH Simulation of Floating Structures with Moorings
,”
Coastal Eng.
,
153
.
38.
Martin
,
T.
,
Kamath
,
A.
, and
Bihs
,
H.
,
2018
, “
Modelling and Simulation of Moored-Floating Structures Using the Tension-Element-Method
,”
Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering—OMAE
, Vol. 2, pp.
1
8
.
39.
Cui
,
J.
,
Li
,
Q.
,
Cheng
,
Y.
,
Ji
,
C. Y.
, and
Deng
,
X. K.
,
2019
, “
Addition of Dynamic Mooring Line Force Based on Lumped-Mass Method in SPH
,”
Ocean Eng.
,
182
, pp.
90
101
.
40.
Jiang
,
C.
,
el Moctar
,
O.
,
Schellin
,
T. E.
, and
Paredes
,
G. M.
,
2020
, “
Comparative Study of Mathematical Models for Mooring Systems Coupled with CFD
,”
Ships Offshore Struct.
, pp.
1
13
.
You do not currently have access to this content.