Abstract

Numerical studies were conducted on the hydrodynamics of a freely falling rigid sphere in bounded and unbounded water domains to investigate the drag coefficient, normalized velocity, pressure coefficient, and skin friction coefficient as a function of dimensionless time. The bounded domain was simulated by bringing the cylindrical water container’s wall closer to the impacting rigid sphere and linking it to the blockage ratio (BR), defined as the ratio of the projection area of a freely falling sphere to that of the cross-sectional area of the cylindrical water container. Six cases of bounded domains (BR = 1%, 25%, 45%, 55%, 65%, and 75%) were studied. However, the unbounded domain was considered with a BR of 0.01%. In addition, the k–ω shear stress transport (SST) turbulence model was used, and the computed results of the bounded domain were compared with those of other studies on unbounded domains. In the case of the bounded domain, which has a higher value of BR, a substantial reduction in normalized velocity and an increase in the drag coefficient were found. Moreover, the bounded domain yielded a significant increase in the pressure coefficient when the sphere was half-submerged; however, an insignificant effect was found on the skin friction coefficient. In the case of the unbounded domain, a significant reduction in the normalized velocity occurred with a decrease in the Reynold number (Re), whereas the drag coefficient increases with a decrease in Reynolds number.

References

1.
Zhao
,
R.
, and
Faltinsen
,
O.
,
1993
, “
Water Entry of Two-Dimensional Bodies
,”
J. Fluid Mech.
,
246
, pp.
593
612
.
2.
Kleefsman
,
K. M. T.
,
Fekken
,
G.
,
Veldman
,
A. E. P.
,
Iwanowski
,
B.
, and
Buchner
,
B.
,
2005
, “
A Volume-of-Fluid Based Simulation Method for Wave Impact Problems
,”
J. Comput. Phys.
,
206
(
1
), pp.
363
393
.
3.
Stenius
,
I.
,
Rosen
,
A.
, and
Kuttenkeuler
,
J.
,
2007
, “
Explicit FE-Modelling of Hydroelasticity in Panel-Water Impacts
,”
Int. Shipbuild. Prog.
,
53
(
2–3
), pp.
103
121
.
4.
Oger
,
G.
,
Doring
,
M.
,
Alessandrini
,
B.
, and
Ferrant
,
P.
,
2006
, “
Two-Dimensional SPH Simulations of Wedge Water Entries
,”
J. Comput. Phys.
,
213
(
2
), pp.
803
822
.
5.
Fairlie-Clarke
,
A. C.
, and
Tveitnes
,
T.
,
2008
, “
Momentum and Gravity Effects During the Constant Velocity Water Entry of Wedge-Shaped Sections
,”
Ocean Eng.
,
35
(
7
), pp.
706
716
.
6.
Yang
,
Q.
, and
Qiu
,
W.
,
2012
, “
Numerical Simulation of Water Impact for 2D and 3D Bodies
,”
Ocean Eng.
,
43
, pp.
82
89
.
7.
Lin
,
P.
,
2007
, “
A Fixed-Grid Model for Simulation of a Moving Body in Free Surface Flows
,”
Comput. Fluids
,
36
(
3
), pp.
549
561
.
8.
Zhu
,
X.
,
Faltinsen
,
O.
, and
Hu
,
C.
,
2005
, “
Water Entry and Exit of a Horizontal Circular Cylinder
,”
ASME J. Offshore Mech. Arct. Eng.
,
129
(
4
), pp.
253
264
.
9.
Chella
,
M. A.
,
Bihs
,
H.
,
Myrhaug
,
D.
, and
Arntsen
,
ØA
,
2019
, “
Numerical Modeling of Breaking Wave Kinematics and Wave Impact Pressures on a Vertical Slender Cylinder
,”
ASME J. Offshore Mech. Arct. Eng.
,
141
(
5
), p.
051802
.
10.
Ma
,
C.
,
Sun
,
H.
, and
Bernitsas
,
M. M.
,
2018
, “
Nonlinear Piecewise Restoring Force in Hydrokinetic Power Conversion Using Flow-Induced Vibrations of Two Tandem Cylinders
,”
ASME J. Offshore Mech. Arct. Eng.
,
140
(
4
), p.
041901
.
11.
Saghatchi
,
R.
,
Ghazanfarian
,
J.
, and
Gorji-Bandpy
,
M.
,
2014
, “
Numerical Simulation of Water-Entry and Sedimentation of an Elliptic Cylinder Using Smoothed-Particle Hydrodynamics Method
,”
ASME J. Offshore Mech. Arct. Eng.
,
136
(
3
), p.
031801
.
12.
Yang
,
J.
, and
Stern
,
F.
,
2009
, “
Sharp Interface Immersed-Boundary/Level-Set Method for Wave-Body Interactions
,”
J. Comput. Phys.
,
228
(
17
), pp.
6590
6616
.
13.
Zhang
,
Y.
,
Zou
,
Q.
,
Greaves
,
D.
,
Reeve
,
D.
,
Hunt-Raby
,
A.
,
Graham
,
D.
,
James
,
P.
, and
Lv
,
X.
,
2010
, “
A Level Set Immersed Boundary Method for Water Entry and Exit
,”
Commun. Comput. Phys.
,
8
(
2
), pp.
265
288
.
14.
Shen
,
Z. R.
, and
Wan
,
D. C.
,
2011
, “
Numerical Simulation of Sphere Water Entry Problem Based on VOF And Dynamic Mesh Methods
,”
Proceedings of 21st International Offshore and Polar Engineering Conference
,
Maui, HI
,
June 19–24
, pp.
695
702
.
15.
Guo
,
J.
,
2011
, “
Motion of Spheres Falling Through Fluids
,”
J. Hydraul. Res.
,
49
(
1
), pp.
32
41
.
16.
Abraham
,
J.
,
Gorman
,
J.
,
Reseghetti
,
F.
,
Sparrow
,
E.
,
Stark
,
J.
, and
Shepard
,
T.
,
2014
, “
Modeling and Numerical Simulation of the Forces Acting on a Sphere During Early-Water Entry
,”
Ocean Eng.
,
76
, pp.
1
9
.
17.
Nair
,
V. V.
, and
Bhattacharyya
,
S. K.
,
2018
, “
Water Entry and Exit of Axisymmetric Bodies by CFD Approach
,”
J. Ocean Eng. Sci.
,
3
(
2
), pp.
156
714
.
18.
Baldwin
,
J. L.
, and
Steves
,
H. K.
,
1975
, “
Vertical Water Entry of Spheres
,” NSWC Technical Report, Naval Surface Weapons Center, MD.
19.
Yu
,
P.
,
Shen
,
C.
,
Zhen
,
C.
,
Tang
,
H.
, and
Wang
,
T.
,
2019
, “
Parametric Study on the Free-Fall Water Entry of a Sphere by Using the RANS Method
,”
J. Mar. Sci. Eng.
,
7
(
5
), p.
122
.
20.
Greenhow
,
M.
,
1987
, “
Wedge Entry Into Initially Calm Water
,”
Appl. Ocean Res.
,
9
(
4
), pp.
214
223
.
21.
Shams
,
A.
,
Jalalisendi
,
M.
, and
Porfiri
,
M.
,
2015
, “
Experiments on the Water Entry of Asymmetric Wedges Using Particle Image Velocimetry
,”
Phys. Fluids
,
27
(
2
), p.
27103
.
22.
Peseux
,
B.
,
Gornet
,
L.
, and
Donguy
,
B.
,
2005
, “
Hydrodynamic Impact: Numerical and Experimental Investigations
,”
J. Fluids Struct.
,
21
(
3
), pp.
277
303
.
23.
Kamath
,
A.
,
Bihs
,
H.
, and
Arntsen
,
ØA
,
2017
, “
Study of Water Impact and Entry of a Free Falling Wedge Using Computational Fluid Dynamics Simulations
,”
ASME J. Offshore Mech. Arct. Eng.
,
139
(
3
), p.
031802
.
24.
Wang
,
J.
, and
Faltinsen
,
O. M.
,
2013
, “
Numerical Investigation of Air Cavity Formation During the High-Speed Vertical Water Entry of Wedges
,”
ASME J. Offshore Mech. Arct. Eng.
,
135
(
1
), p.
011101
.
25.
De Backer
,
G.
,
Vantorre
,
M.
,
Beels
,
C.
,
De Pré
,
J.
,
Victor
,
S.
,
De Rouck
,
J.
,
Blommaert
,
C.
, and
Van Paepegem
,
W.
,
2009
, “
Experimental Investigation of Water Impact on Axisymmetric Bodies
,”
Appl. Ocean Res.
,
31
(
3
), pp.
143
156
.
26.
El Malki Alaoui
,
A.
,
Nême
,
A.
,
Tassin
,
A.
, and
Jacques
,
N.
,
2012
, “
Experimental Study of Coefficients During Vertical Water Entry of Axisymmetric Rigid Shapes at Constant Speeds
,”
Appl. Ocean Res.
,
37
, pp.
183
197
.
27.
Nisewanger
,
C. R.
,
1961
, “
Experimental Determination of Pressure Distribution on a Sphere During Water Entry
,” NAVWEPS Report 7808, Naval Ordnance Test Station,
China Lake, CA
.
28.
Araki
,
R.
,
Takita
,
A.
,
Ishima
,
T.
,
Kawashima
,
H.
,
Pornsuwancharoen
,
N.
,
Punthawanunt
,
S.
,
Carcasona
,
E.
, and
Fujii
,
Y.
,
2014
, “
Impact Force Measurement of a Spherical Body Dropping Onto a Water Surface
,”
Rev. Sci. Instrum.
,
85
(
7
), p.
075108
.
29.
Hurd
,
R. C.
,
Belden
,
J.
,
Jandron
,
M. A.
,
Fanning
,
D. T.
,
Bower
,
A. F.
, and
Truscott
,
T. T.
,
2017
, “
Water Entry of Deformable Spheres
,”
J. Fluid Mech.
,
824
, pp.
912
930
.
30.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
31.
Ferziger
,
J. H.
, and
Peric
,
M.
,
2001
,
Computational Methods for Fluid Dynamics
,
Springer-Verlang
,
Berlin, Heidelberg, Germany
.
32.
Sagaut
,
P.
,
2006
,
Large Eddy Simulation for Incompressible Flows: An Introduction
,
Springer Science & Business Media
,
Berlin, Heidelberg, Germany
.
33.
ANSYS Inc.
,
2013
,
ANSYS Meshing User’s Guide
,
ANSYS Inc.
,
PA
.
34.
ANSYS Inc.
,
2013
,
Fluent Theory Guide
,
ANSYS Inc.
,
PA
.
35.
Yousif
,
M. Z.
, and
Lim
,
H. C.
,
2021
, “
Improved Delayed Detached-Eddy Simulation and Proper Orthogonal Decomposition Analysis of Turbulent Wake Behind a Wall-Mounted Square Cylinder
,”
AIP Adv.
,
11
(
4
), p.
045011
.
36.
Zhao
,
W.
,
Wang
,
J.
, and
Wan
,
D.
,
2020
, “
Vortex Identification Methods in Marine Hydrodynamics
,”
J. Hydrodyn.
,
32
(
2
), pp.
286
295
.
You do not currently have access to this content.