Abstract

The safe operation of ships requires the condition of propulsion components to be maintained. Digital twins are a promising alternative for intelligent monitoring of these complex systems. Digital twins require models which ensure that the digital representation is able to mimic the behavior of the physical system. Alternate modeling solutions must be found when intellectual property restrictions or lack of available information limit the usability of physics-based models. This paper considers such a case where a system model of the propulsion system requires a real-time capable model of the propeller hydrodynamic torque. The creation of a data-driven hydrodynamic torque model based on full-scale, operational measurements is discussed. The described method focuses on the significant challenges associated with data cleaning and preparation while also evaluating whether well-known machine learning methods are suited for this application. The methods use speed-over-ground, heading, course, rotational speed, and propeller pitch as inputs. The outputs of the models are the single quadrant propeller torque coefficient and the amplitude of harmonic torsional excitation. These outputs are then combined to create a holistic prediction of the torque. Results indicate that both a polynomial least-squares fit and a shallow neural network predict the mean and the amplitude of harmonic components of the torque well. This prediction can be used to isolate the hydrodynamic torque when more than one torque source is present or to simulate what-if scenarios in a digital twin environment.

References

1.
Nejad
,
A. R.
,
Purcell
,
E.
,
Valavi
,
M.
,
Hudak
,
R.
,
Lehmann
,
B.
,
Guzmán
,
F. G.
,
Behrendt
,
F.
, et al
,
2021
, “
Condition Monitoring of Ship Propulsion Systems: State-of-the-Art, Development Trend and Role of Digital Twin
,”
International Conference on Offshore Mechanics and Arctic Engineering
,
Virtual Online
,
June 21–30
,
p. V007T07A005
.
2.
Jones
,
D.
,
Snider
,
C.
,
Nassehi
,
A.
,
Yon
,
J.
, and
Hicks
,
B.
,
2020
, “
Characterising the Digital Twin: A Systematic Literature Review
,”
CIRP J. Manuf. Sci. Technol.
,
29
(
A
), pp.
36
52
.
3.
Kritzinger
,
W.
,
Karner
,
M.
,
Traar
,
G.
,
Henjes
,
J.
, and
Sihn
,
W.
,
2018
, “
Digital Twin in Manufacturing: A Categorical Literature Review and Classification
,” 16th IFAC Symposium on Information Control Problems in Manufacturing INCOM, Vol. 51,
Bergamo
, pp.
1016
1022
, 2018-06-11/2018-06-13, Paper No. 11.
4.
Minerva
,
R.
,
Lee
,
G. M.
, and
Crespi
,
N.
,
2020
, “
Digital Twin in the IoT Context: A Survey on Technical Features, Scenarios, and Architectural Models
,”
Proc. IEEE
,
108
(
10
), pp.
1785
1824
.
5.
Kapteyn
,
M. G.
,
Pretorius
,
J. V.
, and
Willcox
,
K. E.
,
2021
, “
A Probabilistic Graphical Model Foundation for Enabling Predictive Digital Twins at Scale
,”
Nat. Comput. Sci.
,
1
(
5
), pp.
337
347
.
6.
Purcell
,
E.
,
Nejad
,
A. R.
,
Böhm
,
A. M.
,
Lund
,
J.
,
von Bock und Polach
,
F.
,
Nickerson
,
B. M.
,
Bekker
,
A.
, et al
,
2024
, “
On Methodology for a Digital Twin of Ship Propulsion Under Harsh Environmental Conditions
,”
International Conference on Offshore Mechanics and Arctic Engineering
,
Singapore
,
June 9–14
,
p. V006T07A024
.
7.
Carlton
,
J.
,
2018
,
Marine Propellers and Propulsion
,
Butterworth-Heinemann
,
Oxford, UK
.
8.
Prandtl
,
L.
,
1921
,
Applications of Modern Hydrodynamics to Aeronautics
,
US Government Printing Office
.
9.
Lee
,
C.-S.
,
1979
, “
Predicton of Steady and Unsteady Performance of Marine Propellers With or Without Cavitation by Numerical Lifting-Surface Theory
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
10.
Hess
,
J. L.
, and
Valarezo
,
W. O.
,
1985
, “
Calculation of Steady Flow About Propellers Using a Surface Panel Method
,”
J. Propul. Power
,
1
(
6
), pp.
470
476
.
11.
Tahara
,
Y.
,
Wilson
,
R. V.
,
Carrica
,
P. M.
, and
Stern
,
F.
,
2006
, “
RANS Simulation of a Container Ship Using a Single-Phase Level-Set Method With Overset Grids and the Prognosis for Extension to a Self-propulsion Simulator
,”
J. Mar. Sci. Technol.
,
11
(
4
), p.
209
.
12.
Morgut
,
M.
, and
Nobile
,
E.
,
2012
, “
Influence of Grid Type and Turbulence Model on the Numerical Prediction of the Flow Around Marine Propellers Working in Uniform Inflow
,”
Ocean Eng.
,
42
, pp.
26
34
.
13.
Sun
,
W.
,
Hu
,
Q.
,
Hu
,
S.
,
Su
,
J.
,
Xu
,
J.
,
Wei
,
J.
, and
Huang
,
G.
,
2020
, “
Numerical Analysis of Full-Scale Ship Self-propulsion Performance With Direct Comparison to Statistical Sea Trail Results
,”
J. Mar. Sci. Eng.
,
8
(
1
), p.
24
.
14.
Veritec
,
1985
,
Vibration Control in Ships
,
Veritec
.
15.
Ueno
,
M.
, and
Tsukada
,
Y.
,
2016
, “
Estimation of Full-Scale Propeller Torque and Thrust Using Free-Running Model Ship in Waves
,”
Ocean Eng.
,
120
, pp.
30
39
.
16.
Schizas
,
C.
,
2002
, “
Artificial Neural Networks in Estimating Marine Propeller Cavitation
,”
Proceedings of the 2002 International Joint Conference on Neural Networks
,
Honolulu, HI
,
May 12–17
, Vol. 2, pp.
1848
1852
.
17.
Roddy
,
R. F.
,
Hess
,
D. E.
, and
Faller
,
W.
,
2006
, “Neural Network Predictions of the 4-Quadrant Wageningen Propeller Series,” David Taylor Model Basin Washington DC Hydromechanics Lab.
18.
Calcagni
,
D.
,
Salvatore
,
F.
,
Bernardini
,
G.
, and
Miozzi
,
M.
,
2010
, “
Automated Marine Propeller Design Combining Hydrodynamics Models and Neural Networks
,”
First International Symposium on Fishing Vessel Energy Efficiency
,
Vigo, Spain
,
May 18–20
.
19.
Islam
,
M.
,
2021
, “
Machine Learning Techniques for Ship Performance Predictions in Open Water and Ice
,”
ISOPE International Ocean and Polar Engineering Conference
,
Online
,
June 20–25
.
20.
Bakhtiari
,
M.
, and
Ghassemi
,
H.
,
2020
, “
CFD Data Based Neural Network Functions for Predicting Hydrodynamic Performance of a Low-Pitch Marine Cycloidal Propeller
,”
Appl. Ocean Res.
,
94
, p.
101981
.
21.
Knight
,
B.
, and
Maki
,
K.
,
2020
, “
Multi-Degree of Freedom Propeller Force Models Based on a Neural Network and Regression
,”
J. Mar. Sci. Eng.
,
8
(
2
), p.
89
.
22.
Taskar
,
B.
, and
Andersen
,
P.
,
2021
, “
Comparison of Added Resistance Methods Using Digital Twin and Full-Scale Data
,”
Ocean Eng.
,
229
, p.
108710
.
23.
Yoo
,
B.
, and
Kim
,
J.
,
2019
, “
Probabilistic Modeling of Ship Powering Performance Using Full-Scale Operational Data
,”
Appl. Ocean Res.
,
82
, pp.
1
9
.
24.
Lang
,
X.
,
Wu
,
D.
, and
Mao
,
W.
,
2022
, “
Comparison of Supervised Machine Learning Methods to Predict Ship Propulsion Power at Sea
,”
Ocean Eng.
,
245
, p.
110387
.
25.
Nielsen
,
R. E.
,
Papageorgiou
,
D.
,
Nalpantidis
,
L.
,
Jensen
,
B. T.
, and
Blanke
,
M.
,
2022
, “
Machine Learning Enhancement of Manoeuvring Prediction for Ship Digital Twin Using Full-Scale Recordings
,”
Ocean Eng.
,
257
, p.
111579
.
26.
Nickerson
,
B. M.
, and
Bekker
,
A.
,
2022
, “
Inverse Model for the Estimation of Ice-Induced Propeller Moments Using Modal Superposition
,”
Appl. Math. Model.
,
102
, pp.
640
660
.
27.
De Koker
,
N.
,
Bekker
,
A.
, and
Steyn
,
B.
,
2024
, “
Design Limit Exceedance Probability of Ice Loading on Propulsion Shaft of a Polar Research Vessel
,”
Mech. Syst. Signal Process.
,
210
, p.
111164
.
28.
Ikonen
,
T.
,
Peltokorpi
,
O.
, and
Karhunen
,
J.
,
2015
, “
Inverse Ice-Induced Moment Determination on the Propeller of an Ice-Going Vessel
,”
Cold Reg. Sci. Technol.
,
112
, pp.
1
13
.
29.
Bekker
,
A.
,
Suominen
,
M.
,
Kujala
,
P.
,
De Waal
,
R. J. O.
, and
Soal
,
K. I.
,
2019
, “
From Data to Insight for a Polar Supply and Research Vessel
,”
Ship Technol. Res.
,
66
(
1
), pp.
57
73
.
30.
Suominen
,
M.
,
Karhunen
,
J.
,
Bekker
,
A.
,
Kujala
,
P.
,
Elo
,
M.
,
Enlund
,
H.
,
von Bock und Polach
,
R.
, et al
,
2013
, “
Full-Scale Measurements on Board PSRV SA Agulhas II in the Baltic Sea
,”
International Conference on Port and Ocean Engineering under Arctic Conditions
,
Espoo, Finland
,
June 9–13
.
31.
Purcell
,
E.
,
Nejad
,
A. R.
, and
Bekker
,
A.
,
2023
, “
Detection of Ice Using Ship Propulsion and Navigation Measurements
,”
Ocean Eng.
,
273
, p.
113992
.
32.
Cooley
,
J. W.
, and
Tukey
,
J. W.
,
1965
, “
An Algorithm for the Machine Calculation of Complex Fourier Series
,”
Math. Comput.
,
19
(
90
), pp.
297
301
.
33.
Yen
,
S.-J.
, and
Lee
,
Y.-S.
,
2009
, “
Cluster-Based Under-Sampling Approaches for Imbalanced Data Distributions
,”
Expert Syst. Appl.
,
36
(
3
), pp.
5718
5727
.
34.
MathWorks
,
2023
, “MATLAB version: 9.14.0 (R2023a),” https://www.mathworks.com
35.
MathWorks
,
2023
, “kmeans,” Natick, MA, se.mathworks.com/help/stats/ kmeans.html, Accessed April 20, 2023.
36.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J.
,
2009
,
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
,
Springer Science & Business Media
,
New York
.
37.
MathWorks
,
2023
, “fitlm,” Natick, MA, se.mathworks.com/help/stats/fitlm.html, Accessed April 20, 2023.
38.
MathWorks
,
2023
, “fitrnet,” Natick, MA, se.mathworks.com/help/stats/fitrnet.html, Accessed April 20, 2023.
39.
Rolls-Royce
, “
2010
, “Report SA1090: Whirling Calculation.”
You do not currently have access to this content.