Graphical Abstract Figure

One of the main ways of floating LNG transportation at sea

Graphical Abstract Figure

One of the main ways of floating LNG transportation at sea

Close modal

Abstract

Helical carcass-supported composite flexible cryogenic pipes (HC-FCP) for liquefied natural gas (LNG) are critical components in floating liquefied natural gas (FLNG) storage and offloading systems. The complex cross-sectional structure of HC-FCP must withstand cryogenic temperatures as low as −163 °C, which significantly affects the mechanical properties of the pipe materials. Predicting the temperature distribution within the pipe is essential for evaluating its performance under operational conditions. In this study, a three-dimensional axisymmetric steady-state heat transfer numerical model of HC-FCP is developed, achieving a maximum deviation of only 5.1% when compared to experimental temperature measurements. The temperature field at operational conditions exhibits a gradient distribution along the radial direction and a corrugated distribution along the axial direction. Additionally, the influence of external environmental factors on the pipe's temperature field is analyzed. The results indicate that the temperature difference between the inner and outer surfaces increases with rising ambient temperature. Similarly, the temperature change between the inner and outer surfaces grows as wind speed increases, although the effect of wind speed on the pipe's temperature diminishes at higher wind speeds.

References

1.
Lu
,
J. L.
,
2009
, “
Current Situation and Proposals for the Development of Natural Gas Industry in China
,”
Nat Gas Ind.
,
29
(
1
), pp.
8
12
.
2.
White
,
J.
, and
Longley
,
H.
,
2009
, “
FLNG Technology Shows Promise for Stranded Gas Fields
,”
Offshore (Conroe, Tex.)
,
69
(
11
), pp.
78
79
.
3.
Elkafas
,
A. G.
,
Khalil
,
M.
,
Shouman
,
M. R.
, and
Elgohary
,
M. M.
,
2021
, “
Environmental Protection and Energy Efficiency Improvement by Using Natural Gas Fuel in Maritime Transportation
,”
Environ. Sci. Pollut. Res.
,
28
(
43
), pp.
60585
60596
.
4.
Yang
,
L.
,
Liu
,
Y.
,
Liu
,
M. E.
, and
Fan
,
J. K.
,
2018
, “
Research and Application of LNG Subsea Cryogenic Pipe Technology
,”
Int. J. Nav. Archit. Ocean Eng.
,
34
(
4
), pp.
62
67
.
5.
Zhao
,
W. H.
,
Yang
,
J. M.
,
Hu
,
Z. Q.
, and
Wei
,
Y. F.
,
2011
, “
Recent Developments on the Hydrodynamics of Floating Liquid Natural Gas (FLNG)
,”
Ocean Eng.
,
38
(
14–15
), pp.
1555
1567
.
6.
Won
,
W.
,
Lee
,
S. K.
,
Choi
,
K.
, and
Kwon
,
Y.
,
2014
, “
Current Trends for the Floating Liquefied Natural Gas (FLNG) Technologies
,”
Korean J. Chem. Eng.
,
31
(
5
), pp.
732
743
.
7.
Lagarrigue
,
V.
, and
Hermary
,
J.
,
2018
, “
RE-Shaping LNG Transfer
,”
Offshore Technology Conference
,
Houston, TX
,
Apr. 30–May 3
. https://doi.org/10.4043/28780-MS.
8.
Yang
,
L.
,
Liu
,
M. E.
,
Fan
,
J. K.
,
Li
,
F. Q.
,
Ying
,
X. P.
,
Bu
,
Y. F.
,
Cao
,
H. X.
,
Zhang
,
K. L.
,
Yang
,
J. Y.
, and
Yang
,
Z. X.
,
2022
, “
Summary of Development of LNG Cryogenic Flexible Hose-Industrial Application and Structural Analysis
,”
Chin. J. Theor. Appl. Mech.
,
54
(
10
), pp.
2904
2921
.
9.
Witz
,
J. A.
,
Ridolfi
,
M. V.
, and
Hall
,
G. A.
,
2004
, “
Offshore LNG Transfer—A New Flexible Cryogenic Hose for Dynamic Service
,”
Offshore Technology Conference
,
Houston, TX
,
May 3–6
.
10.
Chen
,
Q.
,
Sun
,
Q.
,
Yan
,
J.
,
Cui
,
Y.
,
Yang
,
L.
,
Yang
,
X.
, and
Wu
,
Z.
,
2024
, “
Development and Recent Progress of Hoses for Cryogenic Liquid Transportation
,”
Polymers
,
16
(
7
), p.
905
.
11.
Zoui
,
J. T.
,
2014
, “
Research on the Design and Analysis of Submarine Flexible Pipes Installation
,”
Master thesis
,
Dalian University of Technology
,
Dalian, Liaoning
.
12.
Zhang
,
H.
,
Tong
,
L.
,
Addo
,
M. A.
,
Liang
,
J.
, and
Wang
,
L.
,
2020
, “
Research on Contact Algorithm of Unbonded Flexible Riser Under Axisymmetric Load
,”
Int. J. Press. Vessels Pip.
,
188
, p.
104248
.
13.
He
,
Y.
,
Hernández
,
I. D.
,
Vaz
,
M. A.
, and
Caire
,
M.
,
2020
, “
Estimation of Flexible Riser Curvature Distribution and Bend Stiffener Polyurethane Behavior Using the Levenberg-Marquardt Algorithm in Full Scale Bending-Tension Tests
,”
Ocean Eng.
,
216
, p.
108018
.
14.
Gao
,
Q.
,
Zhang
,
P.
,
Duan
,
M.
,
Yang
,
X.
,
Shi
,
W.
,
An
,
C.
, and
Li
,
Z.
,
2018
, “
Investigation on Structural Behavior of Ring-Stiffened Composite Offshore Rubber Hose Under Internal Pressure
,”
Appl. Ocean Res.
,
79
, pp.
7
19
.
15.
Zhou
,
Y.
,
Duan
,
M.
,
Ma
,
J.
, and
Sun
,
G.
,
2018
, “
Theoretical Analysis of Reinforcement Layers in Bonded Flexible Marine Hose Under Internal Pressure
,”
Eng. Struct.
,
168
, pp.
384
398
.
16.
Tonatto
,
M. L.
,
Tita
,
V.
,
Forte
,
M. M.
, and
Amico
,
S. C.
,
2018
, “
Multi-Scale Analyses of a Floating Marine Hose With Hybrid Polyaramid/Polyamide Reinforcement Cords
,”
Mar. Struct.
,
60
, pp.
279
292
.
17.
Hu
,
Y. M.
,
Zhang
,
H.
,
Guo
,
F. X.
,
Li
,
R. C.
,
Zhang
,
F. L.
, and
Li
,
J. H.
,
2017
, “
Development of Low Temperature Materials for LNG Carriers
,”
Appl. Chem. Ind.
,
46
(
7
), pp.
1391
1393
. .
18.
Zhang
,
J.
,
2018
, “
Analysis of Thermophysical Properties of Marine Flexible Pipe and its Mechanical Behavior
,”
Master thesis
,
Dalian University of Technology
,
Dalian, Liaoning
.
19.
Huang
,
G.
, and
Wu
,
W.
,
2023
, “
Armored Steel Wire Stress Monitoring Strategy of a Flexible Hose in LNG Tandem Offloading Operation
,”
Ocean Eng.
,
281
, p.
114775
.
20.
Wang
,
H.
,
Yang
,
Z.
,
Yan
,
J.
,
Wang
,
G.
,
Shi
,
D.
,
Zhou
,
B.
, and
Li
,
Y.
,
2022
, “
Prediction Method and Validation Study of Tensile Performance of Reinforced Armor Layer in Marine Flexible Pipe/Cables
,”
J. Mar. Sci. Eng.
,
10
(
5
), p.
642
.
21.
Ying
,
X.
,
Yan
,
J.
,
Zhang
,
K.
,
Yang
,
Z.
,
Cao
,
H.
, and
Bu
,
Y.
,
2023
, “
Study on Competition Mechanism of Deformation Modes of U-Shaped Bellows Under Internal Pressure
,”
Mar. Struct.
,
92
, p.
103497
.
22.
Ying
,
X.
,
Yan
,
J.
,
Zhang
,
K.
,
Zhou
,
B.
,
Yang
,
Z.
,
Geng
,
D.
, and
Cao
,
H.
,
2024
, “
Study on Equivalent Mechanical Properties of U-Shaped Bellows Based on Novel Implementation of Asymptotic Homogenization Method
,”
Mar. Struct.
,
96
, p.
103622
.
23.
Jadon
,
M.
,
Kumar
,
U.
,
Choukekar
,
K.
,
Shah
,
N.
, and
Sarkar
,
B.
,
2017
, “
Comparative Analysis on Flexibility Requirements of Typical Cryogenic Transfer Lines
,”
J. Phys. Conf. Ser.
,
823
(
1
), p.
012042
.
24.
Giacosa
,
A.
,
Mauries
,
B.
, and
Lagarrigue
,
V.
,
2016
, “
Joining Forces to Unlock LNG Tandem Offloading Using 20-Inch LNG Floating Hoses: an Example of Industrial Collaboration
,”
Offshore Technology Conference
,
Houston, TX
,
May 2–5
. .
25.
Hao
,
Z.
,
Luo
,
J.
,
Jin
,
Y.
,
Wei
,
W.
, and
Liu
,
L.
,
2020
, “
Failure Analysis of Corrugated Metal Hose Under Ultimate Repeated Bending Process
,”
Eng. Fail. Anal.
,
109
, p.
104295
.
26.
Huang
,
D.
, and
Zhang
,
J.
,
2021
, “
Research on the Tensile Mechanical Properties of a Braided Corrugated Hose and Its Axial Stiffness Model
,”
J. Mar. Sci. Eng.
,
9
(
9
), p.
1029
.
27.
Huang
,
D.
, and
Zhang
,
J.
,
2021
, “
Numerical Simulation and Experimental Study on Axial Stiffness and Stress Deformation of the Braided Corrugated Hose
,”
Appl. Sci.
,
11
(
10
), p.
4709
.
28.
Liu
,
M.
,
Li
,
F.
,
Cheng
,
H.
,
Li
,
E.
,
Yan
,
J.
,
Lu
,
H.
,
Bu
,
Y.
,
Tang
,
T.
, and
Lu
,
Z.
,
2024
, “
Thermal Stress Analysis of the LNG Corrugated Cryogenic Hose During Gas Pre-Cooling Process
,”
ISOPE International Ocean and Polar Engineering Conference
,
Rhodes, Greece
,
June 16–21
,
ISOPE-I-24-440
.
29.
Wu
,
C.
,
Liu
,
J.
, and
Zhang
,
J.
,
2024
, “
Transient Thermal Analysis on Pre-Cooling Process of LNG Cryogenic Corrugated Hose
,”
Geoenergy Sci. Eng.
,
232
, p.
212434
.
30.
Yang
,
L.
,
Li
,
F.
,
Lu
,
Z.
, and
Yan
,
J.
,
2023
, “
Thermophysical Properties of the Corrugated Cryogenic Hose Precooling Process
,”
J. Pipeline Sci. Eng.
,
3
(
2
), p.
100110
.
31.
Wang
,
C.
,
Gu
,
W.
,
Wang
,
D.
, and
Li
,
Y.
,
2017
, “
Effect Analysis of Temperature Gradient on Metal Bellow Mechanical Performance
,”
Nucl. Sci. Eng.
,
37
(
4
), pp.
663
668
.
32.
Yan
,
J. B.
,
Geng
,
Y.
,
Xie
,
P.
, and
Xie
,
J.
,
2022
, “
Low-Temperature Mechanical Properties of Stainless Steel 316L: Tests and Constitutive Models
,”
Constr. Build. Mater.
,
343
, p.
128122
.
33.
Buitrago
,
J.
,
Slocum
,
S. T.
,
Hudak Jr
,
S. J.
, and
Long
,
R.
,
2010
, “
Cryogenic Structural Performance of Corrugated Pipe
,”
International Conference on Offshore Mechanics and Arctic Engineering
,
Shanghai, China
,
June 6–11
,
Vol. 49149, pp. 331–342
.
34.
Yang
,
L.
,
Liu
,
M. E.
,
Liu
,
Y.
,
Li
,
F. Q.
,
Fan
,
J. K.
,
Liu
,
F. P.
,
Lu
,
Z. K.
,
Yang
,
J. Y.
, and
Yan
,
J.
,
2022
, “
Thermal-Fluid-Structure Coupling Analysis of Flexible Corrugated Cryogenic Hose
,”
China Ocean Eng.
,
36
(
4
), pp.
658
665
.
35.
Bao
,
C.
, and
Mo
,
H. Y.
,
2013
, “
Numerical Simulation on Temperature Field of Cold-Keeping Layer of LNG Pipes
,”
Contemp. Chem. Ind.
,
42
(
11
), pp.
1608
1610
. .
36.
Li
,
S. Q.
, and
Yan
,
T. L.
,
2012
, “
Numerical Simulation of Temperature Field of Bellows Expansion Joint
,”
Pipe Tech. Equip.
,
2012
(
4
), pp.
17
20
.
37.
Fu
,
Y.
,
2022
, “
Study on Low Temperature Mechanical Properties of FLNG Composite Hose
,”
Master thesis
,
Dalian University of Technology
,
Dalian, Liaoning
.
38.
Sun
,
L. Y.
,
Meng
,
C. L.
,
Wang
,
J.
, and
Zhang
,
G.
,
2019
, “
Experimental Study of the Thermal Contact Resistance of Materials Commonly Used in Satellites Under Vacuum and Low Temperature
,”
J. Beijing Univ. Chem. Technol. (Nat. Sci. Ed.)
,
46
(
4
), pp.
54
57
. .
39.
Zhou
,
S. Z.
,
Liu
,
S.
,
Hua
,
J.
, and
Li
,
M. Q.
,
2019
, “
Fretting Wear of Interference Fitting Surface of Planet Carrier Axle Hole
,”
China Pet. Mach.
,
47
(
12
), pp.
7
14
.
40.
API R P 17B, 2014
,
2014
,
Recommended Practice for Flexible Pipe
,
American Petroleum Institute
,
Washington, DC
.
You do not currently have access to this content.