Abstract

Accurate dynamic response forecasting is crucial for the operational monitoring, maintenance, and dynamic control of floating wind turbines (FWT). In this study, an ultra-short-term forecasting model of mooring line tension for a full-size FWT is developed by combining a long short-term memory (LSTM) encoder–decoder network with frequency decomposition (FD), i.e., the LSTM-FD method. After presenting the principles of the LSTM-FD-based ultra-short-term forecasting model, full-scaled measurement data from the Hywind Scotland wind farm are used to validate and demonstrate the accuracy of the proposed model. The result shows that the LSTM-FD method has good consistency between different datasets, and higher accuracy than the LSTM without frequency decomposition. For instance, achieving a 10% enhancement in the accuracy of maximum forecasting for line 1 bridle 1 over a 60-s horizon. More importantly, compared to traditional methods, LSTM-FD improves accuracy by using frequency decomposition to better capture changes in mooring forces of FWT across different frequency ranges. In summary, the proposed method can facilitate more precise and timely maintenance scheduling, reduce operational costs, and enhance the overall safety of FWT operations by mitigating the risk of mooring line failures.

References

1.
Velenturf
,
A.
,
Emery
,
A.
,
Hodgson
,
D.
,
Barlow
,
N.
,
Mohtaj Khorasani
,
A.
,
Van Alstine
,
J.
,
Peterson
,
E.
,
Piazolo
,
S.
, and
Thorp
,
M.
,
2021
, “
Geoscience Solutions for Sustainable Offshore Wind Development
,”
Earth Sci. Syst. Soc.
,
1
, p.
10042
.
2.
Barthelmie
,
R. J.
, and
Pryor
,
S. C.
,
2021
, “
Climate Change Mitigation Potential of Wind Energy
,”
Climate
,
9
(
9
), p.
136
.
3.
Tande
,
J. O. G.
,
Merz
,
K.
,
Paulsen
,
U. S.
, and
Svendsen
,
H. G.
,
2015
, “
Floating Offshore Turbines
,”
Wiley Interdiscip. Rev.: Energy Environ.
,
4
(
3
), pp.
213
228
.
4.
Yang
,
R.-Y.
,
Chuang
,
T.-C.
,
Zhao
,
C.
, and
Johanning
,
L.
,
2022
, “
Dynamic Response of an Offshore Floating Wind Turbine at Accidental Limit States – Mooring Failure Event
,”
Appl. Sci.
,
12
(
3
), p.
1525
.
5.
Moan
,
T.
,
Gao
,
Z.
,
Bachynski
,
E. E.
, and
Nejad
,
A. R.
,
2020
, “
Recent Advances in Integrated Response Analysis of Floating Wind Turbines in a Reliability Perspective
,”
ASME J. Offshore Mech. Arct. Eng.
,
142
(
5
), p.
052002
.
6.
Ma
,
K.-T.
,
Wu
,
Y.
,
Stolen
,
S. F.
,
Bello
,
L.
,
ver der Horst
,
M.
, and
Luo
,
Y.
, “
Mooring Designs for Floating Offshore Wind Turbines Leveraging Experience From the Oil & Gas Industry
,”
Proceedings of International Conference on Offshore Mechanics and Arctic Engineering
,
American Society of Mechanical Engineers
, p.
V001T001A031
.
7.
Campanile
,
A.
,
Piscopo
,
V.
, and
Scamardella
,
A.
,
2018
, “
Mooring Design and Selection for Floating Offshore Wind Turbines on Intermediate and Deep Water Depths
,”
Ocean Eng.
,
148
, pp.
349
360
.
8.
Barrera
,
C.
,
Battistella
,
T.
,
Guanche
,
R.
, and
Losada
,
I. J.
,
2020
, “
Mooring System Fatigue Analysis of a Floating Offshore Wind Turbine
,”
Ocean Eng.
,
195
, p.
106670
.
9.
Bae
,
Y.
,
Kim
,
M.
, and
Kim
,
H.
,
2017
, “
Performance Changes of a Floating Offshore Wind Turbine With Broken Mooring Line
,”
Renewable Energy
,
101
, pp.
364
375
.
10.
Duan
,
F.
,
Hu
,
Z.
,
Liu
,
G.
, and
Wang
,
J.
,
2016
, “
Experimental Comparisons of Dynamic Properties of Floating Wind Turbine Systems Based on Two Different Rotor Concepts
,”
Appl. Ocean Res.
,
58
, pp.
266
280
.
11.
Duan
,
F.
,
Hu
,
Z.
, and
Niedzwecki
,
J.
,
2016
, “
Model Test Investigation of a Spar Floating Wind Turbine
,”
Mar. Struct.
,
49
, pp.
76
96
.
12.
Wang
,
G.
,
Jia
,
R.
,
Liu
,
J.
, and
Zhang
,
H.
,
2020
, “
A Hybrid Wind Power Forecasting Approach Based on Bayesian Model Averaging and Ensemble Learning
,”
Renew. Energy
,
145
, pp.
2426
2434
.
13.
Ju
,
Y.
,
Sun
,
G.
,
Chen
,
Q.
,
Zhang
,
M.
,
Zhu
,
H.
, and
Rehman
,
M. U.
,
2019
, “
A Model Combining Convolutional Neural Network and LightGBM Algorithm for Ultra-Short-Term Wind Power Forecasting
,”
IEEE Access
,
7
, pp.
28309
28318
.
14.
Ssekulima
,
E. B.
,
Anwar
,
M. B.
,
Al Hinai
,
A.
, and
El Moursi
,
M. S.
,
2016
, “
Wind Speed and Solar Irradiance Forecasting Techniques for Enhanced Renewable Energy Integration With the Grid: A Review
,”
IET Renew. Power Gener.
,
10
(
7
), pp.
885
989
.
15.
Zhao
,
X.
,
Liu
,
J.
,
Yu
,
D.
, and
Chang
,
J.
,
2018
, “
One-Day-Ahead Probabilistic Wind Speed Forecast Based on Optimized Numerical Weather Prediction Data
,”
Energy Convers. Manage.
,
164
, pp.
560
569
.
16.
Barooni
,
M.
,
Ali
,
N. A.
, and
Ashuri
,
T.
,
2018
, “
An Open-Source Comprehensive Numerical Model for Dynamic Response and Loads Analysis of Floating Offshore Wind Turbines
,”
Energy
,
154
, pp.
442
454
.
17.
Liu
,
L.
,
Liu
,
J.
,
Ye
,
Y.
,
Liu
,
H.
,
Chen
,
K.
,
Li
,
D.
,
Dong
,
X.
, and
Sun
,
M.
,
2023
, “
Ultra-Short-Term Wind Power Forecasting Based on Deep Bayesian Model With Uncertainty
,”
Renew. Energy
,
205
, pp.
598
607
.
18.
Wang
,
Y.
,
Zou
,
R.
,
Liu
,
F.
,
Zhang
,
L.
, and
Liu
,
Q.
,
2021
, “
A Review of Wind Speed and Wind Power Forecasting With Deep Neural Networks
,”
Appl. Energy
,
304
, p.
117766
.
19.
Bjørni
,
F. A.
,
Lien
,
S.
,
Midtgarden
,
T. A.
,
Kulia
,
G.
,
Verma
,
A.
, and
Jiang
,
Z.
,
2021
, “
Prediction of Dynamic Mooring Responses of a Floating Wind Turbine Using an Artificial Neural Network
,”
Proceedings of IOP Conference Series: Materials Science and Engineering
,
Stavanger, Norway and Moscow, Russia
,
Nov. 25–27
, IOP Publishing, p.
012023
.
20.
Li
,
C. B.
, and
Choung
,
J.
,
2017
, “
Fatigue Damage Analysis for a Floating Offshore Wind Turbine Mooring Line Using the Artificial Neural Network Approach
,”
Ships Offshore Struct.
,
12
(
Suppl. 1
), pp.
S288
S295
.
21.
Jiang
,
Y.
,
Duan
,
Y.
,
Li
,
J.
,
Chen
,
M.
, and
Zhang
,
X.
,
2024
, “
Optimization of Mooring Systems for a 10MW Semisubmersible Offshore Wind Turbines Based on Neural Network
,”
Ocean Eng.
,
296
, p.
117020
.
22.
Lingling
,
H.
,
Jialin
,
C.
, and
Kaihua
,
Z.
,
2016
, “
Status and Prospects on Operation and Maintenance of Offshore Wind Turbines
,”
Proc. CSEE
,
36
(
3
), pp.
729
738
.
23.
Li
,
S.
,
Huang
,
L.
,
Liu
,
Y.
, and
Zhang
,
M.
,
2021
, “
Modeling of Ultra-Short Term Offshore Wind Power Prediction Based on Condition-Assessment of Wind Turbines
,”
Energies
,
14
(
4
), p.
891
.
24.
Shi
,
W.
,
Hu
,
L.
,
Lin
,
Z.
,
Zhang
,
L.
,
Wu
,
J.
, and
Chai
,
W.
,
2023
, “
Short-Term Motion Prediction of Floating Offshore Wind Turbine Based on Multi-input LSTM Neural Network
,”
Ocean Eng.
,
280
, p.
114558
.
25.
Chen
,
P.
,
Kang
,
Y.
,
Zhang
,
R.
,
Cheng
,
Z.
,
Deng
,
S.
,
Erfort
,
G.
, and
Hu
,
Z.
,
2024
, “
A Response Frequency Informed LSTM Model for Ultra-Short-Term Mooring Line Forces Prediction of Floating Wind Turbines
,”
Proceedings of the ASME 2024 43rd International Conference on Ocean, Offshore and Arctic Engineering
,
Singapore
.
26.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-Term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
.
27.
Sutskever
,
I.
,
Vinyals
,
O.
, and
Le
,
Q. V.
,
2014
, “
Sequence to Sequence Learning with Neural Networks
,”
Advances in Neural Information Processing Systems 27 (NIPS 2014)
,
Montreal, Canada
,
Dec. 8–13
.
28.
Cho
,
K.
,
Van Merriënboer
,
B.
,
Gulcehre
,
C.
,
Bahdanau
,
D.
,
Bougares
,
F.
,
Schwenk
,
H.
, and
Bengio
,
Y.
,
2014
, “Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation,” arXiv preprint arXiv: 1406.1078.
29.
Torrence
,
C.
, and
Compo
,
G. P.
,
1998
, “
A Practical Guide to Wavelet Analysis
,”
Bull. Am. Meteorol. Soc.
,
79
(
1
), pp.
61
78
.
30.
Chen
,
P.
,
Jia
,
C.
,
Ng
,
C.
, and
Hu
,
Z.
,
2021
, “
Application of SADA Method on Full-Scale Measurement Data for Dynamic Responses Prediction of Hywind Floating Wind Turbines
,”
Ocean Eng.
,
239
, p.
109814
.
You do not currently have access to this content.