Limit analysis is an important tool to assess the integrity of a structure. Successive elastic modulus adjustment, in particular, can simulate the plastic stress redistribution in a structure at the limit state (plastic collapse). Several limit load estimates have been developed based on the stress and strain distribution within a component. The bounding nature of these estimates is examined in this paper. Particular emphasis is given to the limit load estimate mα, which has been proposed to give improved limit load predictions from partly converged stress distributions in the structure. Bounds on the accuracy of these mα predictions are derived.

1.
ASME Boiler and Pressure Vessel Code, 2001, Section III.
2.
ASME Boiler and Pressure Vessel Code, 2001, Section VIII.
3.
Webster, G., and Ainsworth, R. A., 1994, High Temperature Component Life Assessment, Chapman and Hall, London, UK.
4.
Ainsworth, R. A., Dean, D. W., and Budden, P. J., 2000, “Development in Creep Fracture Assessments within the R5 Procedure,” IUTAM Symposium on Creep in Structures, Nagoya, Japan, pp. 321–330.
5.
PD6539:1994, 1994, Guide to Methods for the Assessment of the Influence of Crack Growth on the Significance of Design in Component Operating at High Temperature, BSI, London, UK.
6.
Seshadri
,
R.
,
1991
, “
The Generalized Local Stress Strain (GLOSS) Analysis—Theory and Applications
,”
ASME J. Pressure Vessel Technol.
,
113
, pp.
219
227
.
7.
Jones, G. L., and Dhalla, A. K., 1981, “Classification of Clamp Induced Stresses in Thin Walled Pipe,” ASME PVP-Vol. 81, pp. 17–23.
8.
Marriott, D. L., 1988, “Evaluation of Deformation or Load Control of Stress under Inelastic Conditions using Elastic Finite Element Stress Analysis,” ASME PVP-Vol. 136, pp. 3–9.
9.
Seshadri
,
R.
, and
Fernando
,
C. P. D.
,
1992
, “
Limit Loads of Mechanical Components and Structures using the GLOSS R-Node Method
,”
ASME J. Pressure Vessel Technol.
,
114
, pp.
201
208
.
10.
Mackenzie
,
D.
, and
Boyle
,
J. T.
,
1993
, “
A Method of Estimating Limit Loads Using Elastic Analysis, I: Simple Examples
,”
Int. J. Pressure Vessels Piping
,
53
, pp.
77
85
.
11.
Ponter
,
A. R. S.
,
Fuschi
,
P.
, and
Engelhardt
,
M.
,
2000
, “
Limit Analysis for a General Class of Yield Conditions
,”
Eur. J. Mech. A/Solids
,
19
, pp.
401
421
.
12.
Ponter
,
A. R. S.
, and
Engelhardt
,
M.
,
2000
, “
Shakedown Limit for a General Yield Condition
,”
Eur. J. Mech. A/Solids
,
19
, pp.
423
445
.
13.
Ponter, A. R. S., and Chen, H., 2001, “A Programming Method for Limit Load and Shakedown Analysis of Structures,” ASME PVP-Vol. 430, pp. 155–160.
14.
Mura
,
T.
,
Rimawi
,
W. H.
, and
Lee
,
S. L.
,
1965
, “
Extended Theorems of Limit Analysis
,”
Q. Appl. Math.
,
23
, pp.
171
179
.
15.
Seshadri
,
R.
, and
Mangalaramanan
,
S. P.
,
1997
, “
Lower Bound Limit Loads Using Variational Concepts: The -Method
,”
Int. J. Pressure Vessels Piping
,
71
, pp.
93
106
.
16.
Mangalaramanan
,
P.
, and
Reinhardt
,
W.
,
2001
, “
On Relating Redistributed Elastic and Inelastic Stress Fields
,”
Int. J. Pressure Vessels Piping
,
78
, pp.
283
293
.
17.
Calladine, C. R., 1969, Engineering Plasticity, Pergamon Press, Oxford, UK.
18.
Lubliner, J., 1990, Plasticity Theory, Macmillan, London, UK.
19.
Mackenzie, D., Hamilton, R., and Boyle, J. T., 1996, “The Elastic Compensation Method in Shell Based Design by Analysis,” ASME PVP-Vol. 338-1, pp. 203–208.
20.
Pan, L., and Seshadri, R., 2001, “Limit Load Estimation using Plastic Flow Parameter in Repeated Elastic Finite Element Analysis,” ASME PVP-Vol. 430, pp. 145–150.
You do not currently have access to this content.