Recent progress in creep-resistant bainitic, martensitic, and austenitic steels for high efficiency coal-fired power plants is comprehensively reviewed with emphasis on long-term creep strength and microstructure stability at grain boundaries (GBs). The creep strength enhanced ferritic (CSEF) steels, such as Grade 91 (9Cr–1Mo–0.2V–0.05Nb), Grade 92 (9Cr–0.5Mo–1.8W–VNb), and Grade 122 (11Cr–0.4Mo–2W–1CuVNb), can offer the highest potential to meet the required flexibility for ultra-supercritical (USC) power plants operating at around 600 °C, because of their smaller thermal expansion and larger thermal conductivity than austenitic steels and Ni base alloys. Further improvement of creep strength of martensitic 9 to 12Cr steels has been achieved by substituting a part or all of Mo with W and also by the addition of Co, V, Nb, and boron. A martensitic 9Cr–3W–3Co–VNb steel strengthened by boron and MX nitrides, designated MARBN, exhibits not only much higher creep strength of base metal than Grade 91, Grade 92, and Grade 122 but also substantially no degradation in creep strength due to type IV fracture in welded joints at 650 °C. High-strength bainitic 2.25 to 3Cr steels have been developed by enhancing solid solution hardening due to W and precipitation hardening due to (V,Nb)C carbides in bainitic microstructure. The improvement of creep strength of austenitic steels has been achieved by solid solution hardening due to the addition of Mo, W, and nitrogen and by precipitation hardening due to the formation of fine MX (M = Ti, Nb, X = C, N), NbCrN, M23C6, Cu phase, and Fe2(Mo,W) Laves phase. The boundary and sub-boundary hardening are shown to be the most important strengthening mechanism in creep of creep-resistant steels and is enhanced by fine dispersions of precipitates along boundaries.

References

1.
Abe
,
F.
,
2014
, “
Development of Creep-Resistant Steels and Alloys for Use in Power Plants
,”
Structural Alloys in Power Plants
,
A.
Shirzadi
, and
S.
Jackson
, eds.,
Woodhead Publishing Limited
,
Cambridge, UK
, pp.
250
293
.
2.
Blum
,
R.
, and
Vanstone
,
R. W.
,
2003
, “
Materials Development for Boilers and Steam Turbines Operating at 700 °C
,”
6th International Charles Parsons Turbine Conference
, Dublin, Ireland, pp.
498
510
.
3.
Tschaffon
,
H.
,
2006
, “
The European Way to 700 °C Coal Fired Power Plant
,”
8th Liege Conference on Materials for Advanced Power Engineering 2006
, Liege, Belgium, pp.
61
67
.
4.
Gierschner
,
G.
,
Ulrich
,
C.
,
Tschaffon
,
H.
, and
Hansknecht
,
F.
,
2012
, “
Latest Developments for the Flexible High Efficient Power Plant of the Future
,”
38th MPA Seminar
, Stuttgart, Germany, pp.
353
373
.
5.
Metzger
,
K.
,
Czychon
,
K. H.
,
Maile
,
K.
,
Klenk
,
A.
,
Helmrich
,
A.
, and
Chen
,
Q.
,
2013
, “
GKM Test Rig: Investigation of the Long Term Operation Behavior of Tubes and Forgings Made of Alloys for Future High Efficient Power Plants
,”
Proceedings of the 7th International Conference on Advances in Materials Technology for Fossil Power Plants
, Waikoloa, HI, ASM International, Materials Park, OH, pp.
86
95
.
6.
Gianfrancesco
,
A. Di.
,
Tizzanini
,
A.
, and
Stolzenberger
,
C.
,
2013
, “
ENCIO Project: An Europeanapproach to 700 °C Power Plant
,”
Proceedings of the 7th International Conference on Advances in Materials Technology for Fossil Power Plants
, Waikoloa, HI, ASM International, Materials Park, OH, pp.
19
23
.
7.
Viswanathan
,
R.
,
Henry
,
J. F.
,
Tanzosh
,
J.
,
Stanko
,
G.
,
Shingledecker
,
J.
, and
Vitalis
,
B.
,
2005
, “
U.S. Program on Materials Technology for USC Power Plants
,”
4th International Conference on Advances in Materials Technology for Fossil Power Plants
, Hilton Head Island, SC, pp.
3
19
.
8.
Viswanathan
,
R.
,
Shingledecker
,
J.
,
Hawk
,
J.
, and
Goodstein
,
S.
,
2009
, “
Effect of Creep in Advanced Materials for Use in Ultrasupercritical Coal Power Plants
,”
International Conference on Creep and Fracture in High Temperature Components (2nd ECCC Creep Conference)
, Zurich, Switzerland, pp.
31
43
.
9.
Shingledecker
,
J.
,
Purgert
,
R.
, and
Rawls
,
P.
,
2013
, “
Current Status of the U.S. DOE/OCDO A-USC Materials Technology Research and Development Program
,”
Proceedings of the 7th International Conference on Advances in Materials Technology for Fossil Power Plants
, Waikoloa, HI, ASM International, Materials Park, OH, pp.
41
52
.
10.
Fukuda
,
M.
,
Saito
,
E.
,
Semba
,
H.
,
Iwasaki
,
J.
,
Izumi
,
S.
,
Takano
,
S.
,
Takahashi
,
T.
, and
Sumiyoshi
,
Y.
,
2013
, “
Advanced USC Technology Development in Japan
,”
Proceedings of the 7th International Conference on Advances in Materials Technology for Fossil Power Plants
, Waikoloa, HI, ASM International, Materials Park, OH, pp.
24
40
.
11.
Sun
,
R.
,
Cui
,
Z.
, and
Tao
,
Y.
,
2013
, “
Progress of China 700 °C USC Development Program
,”
Proceedings of the 7th International Conference on Advances in Materials Technology for Fossil Power Plants
, Waikoloa, HI, ASM International, Materials Park, OH, pp.
1
8
.
12.
Liu
,
Z.
,
Bao
,
H.
,
Yang
,
G.
,
Xu
,
S.
,
Wang
,
Q.
, and
Yang
,
Y.
,
2013
, “
Material Advancement Used for 700 °C A-USC-PP in China
,”
Proceedings of the 7th International Conference on Advances in Materials Technology for Fossil Power Plants
, Waikoloa, HI, ASM International, Materials Park, OH, pp.
171
179
.
13.
Mathur
,
A.
,
Bhutani
,
O. P.
,
Jayakumar
,
T.
,
Dubey
,
D. K.
, and
Chetal
,
S. C.
,
2013
, “
India's National A-USC Mission—Plan and Progress
,”
Proceedings of the 7th International Conference on Advances in Materials Technology for Fossil Power Plants
, Waikoloa, HI, ASM International, Materials Park, OH, pp.
53
59
.
14.
Abe
,
F.
,
2015
, “
Research and Development of Heat-Resistant Materials for Advanced USC Power Plants With Steam Temperatures of 700 °C and Above
,”
Engineering
,
1
(
2015
), pp.
211
224
.
15.
Cadek
,
J.
,
1988
,
Creep in Metallic Materials
,
Elsevier
,
Amsterdam/Oxford/New York/Tokyo
, pp.
1
372
.
16.
Evans
,
R. W.
, and
Wilshire
,
B.
,
1985
,
Creep of Metals and Alloys
,
The Institute of Metals
,
London, UK
, pp.
1
256
.
17.
Maruyama
,
K.
,
Sawada
,
K.
, and
Koike
,
J.
,
2001
, “
Strengthening Mechanisms of Creep-Resistant Tempered Martensitic Steel
,”
ISIJ Int.
,
41
(
6
), pp.
641
653
.
18.
Abe
,
F.
,
2004
, “
Bainitic and Martensitic Creep-Resistant Steels
,”
Curr. Opin. Solid State Mater. Sci.
,
8
(3–4), pp.
305
311
.
19.
Abe
,
F.
,
2008
, “
Strengthening Mechanisms in Steel for Creep and Creep Rupture
,”
Creep-Resistant Steels
,
F.
Abe
,
T.-U.
Kern
, and
R.
Viswanathan
, eds.,
Woodhead Publishing Limited
,
Cambridge, UK
, pp.
279
304
.
20.
Yokokawa
,
K.
,
Kanemaru
,
O.
,
Miyazaki
,
H.
,
Ohba
,
T.
, and
Abe
,
F.
,
1999
, “
Effect of W-Mo Balance on Creep Deformation Behavior of 9Cr Steel
,”
CAMP-ISIJ
,
12
, p.
243
(in Japanese).
21.
Maruyama
,
K.
, and
Nakashima
,
H.
,
1997
,
Materials Science for High Temperature Strength
,
Uchida-Rokakuho
,
Tokyo, Japan
(in Japanese).
22.
Sawada
,
K.
,
Kushima
,
H.
,
Tabuchi
,
M.
, and
Kimura
,
K.
,
2011
, “
Microstructural Degradation of Grade 91 Steel During Creep Under Low Stress
,”
Mater. Sci. Eng. A
,
528
(16–17), pp.
5511
5518
.
23.
Taneike
,
M.
,
Abe
,
F.
, and
Sawada
,
K.
,
2003
, “
Creep-Strengthening of Steels at High Temperatures Using Nano-Sized Carbonitride Dispersions
,”
Nature
,
424
(
6946
), pp.
294
296
.
24.
Taneike
,
M.
,
Sawada
,
K.
, and
Abe
,
F.
,
2004
, “
Effect of Carbon Concentration on Precipitation Behavior of M23C6 Carbides and MX Carbonitrides in Martensitic 9Cr Steel During Heat Treatment
,”
Metall. Mater. Trans. A
,
35A
, pp.
1255
1262
.
25.
Abe
,
F.
,
Nakazawa
,
S.
,
Araki
,
H.
, and
Noda
,
T.
,
1992
, “
The Role of Microstructural Instability on Creep Behavior of a Low Activation Martensitic 9Cr-2W Steel
,”
Metall. Trans. A
,
23A
, pp.
469
477
.
26.
Monkman
,
F. C.
, and
Grant
,
N. J.
,
1956
, “
An Empirical Relationship Between Rupture Life and Minimum Creep Rate in Creep-Rupture Tests
,”
ASTM Annual Meeting
, Vol.
56
, pp.
593
620
.
27.
Horiuchi
,
T.
,
Igarashi
,
M.
, and
Abe
,
F.
,
2002
, “
Improved Utilization of Added B in 9Cr Heat-Resistant Steels Containing W
,”
ISIJ Int.
,
42
, pp.
S67
S71
.
28.
Abe
,
F.
,
2008
, “
Effect of Boron on Creep Deformation Behavior and Microstructure Evolution in 9%Cr Steel at 650 °C
,”
Int. J. Mater. Res. (Z. Metallkd.)
,
9
(
9
), pp.
387
394
.
29.
Igarashi
,
M.
,
2008
, “
Alloy Design Philosophy of Creep-Resistant Steels
,”
Creep-Resistant Steels
,
F.
Abe
,
T.-U.
Kern
, and
R.
Viswanathan
, eds.,
Woodhead Publishing Limited
,
Cambridge, UK
, pp.
539
572
.
30.
Danielsen
,
H. K.
, and
Hald
,
J.
,
2006
, “
Behaviour of Z Phase in 9-12%Cr Steels
,”
Energy Mater.
,
1
(
1
), pp.
49
57
.
31.
Strang
,
A.
, and
Vodarek
,
V.
,
1996
, “
Z Phase Formation in Martensitic 12CrMoVNb Steel
,”
Mater. Sci., Technol.
,
12
(
7
), pp.
552
556
.
32.
Cipolla
,
L.
,
Danielsen
,
H. K.
,
Venditti
,
D.
,
Nunzio
,
P. E. D.
,
Hald
,
J.
, and
Somers
,
M. A. J.
,
2010
, “
Conversion of MX Nitrides to Z-Phase in a Martensitic 12% Cr Steel
,”
Acta Mater.
,
58
(
2
), pp.
669
679
.
33.
Sawada
,
K.
,
Kushima
,
H.
,
Kimura
,
K.
, and
Tabuchi
,
M.
,
2007
, “
TTP Diagram of Z Phase in 9-12% Cr Heat-Resistant Steels
,”
ISIJ Int.
,
47
(
5
), pp.
733
739
.
34.
Sawada
,
K.
,
Taneike
,
M.
,
Kimura
,
K.
, and
Abe
,
F.
,
2004
, “
Effect of Nitrogen Content on Microstructural Aspects and Creep Behaviour in Extremely Low Carbon 9Cr Heat-Resistant Steel
,”
ISIJ Int.
,
44
(
7
), pp.
1243
1249
.
35.
Vodarek
,
V.
, and
Strang
,
A.
,
1998
, “
Effect of Nickel on the Precipitation Processes in 12CrMoV Steel During Creep at 550 °C
,”
Scr. Mater.
,
38
, pp.
101
106
.
36.
Sklenicka
,
V.
,
Kucharova
,
K.
,
Svoboda
,
M.
,
Kloc
,
L.
,
Bursik
,
J.
, and
Kroupa
,
A.
,
2003
, “
Long-Term Creep Behaviour of 9-12%Cr Power Plant Steels
,”
Mater. Charact.
,
51
(
1
), pp.
35
48
.
37.
Gianfrancesco
,
A. Di.
,
Cipolla
,
L.
,
Cirilli
,
F.
,
Cumino
,
G.
, and
Caminada
,
S.
,
2005
, “
Microstructural Stability and Creep Data Assessment of Tenaris Grades 91 and 911
,”
1st International Conference on Super-High Strength Steel
, Sheraton Hotel, Rome, Italy, Nov. 2–4, 2005.
38.
Armaki
,
H. G.
,
Maruyama
,
K.
,
Yoshizawa
,
M.
, and
Igarashi
,
M.
,
2008
, “
Prevention of the Overestimation of Long-Term Creep Rupture Life by Multiregion Analysis in Strength Enhanced High Cr Ferritic Steels
,”
Mater. Sci. Eng. A
,
490
(1–2), pp.
66
71
.
39.
Chen
,
R. P.
,
Armaki
,
H. G.
,
Maruyama
,
K.
, and
Igarashi
,
M.
,
2011
, “
Long-Term Microstructural Degradation and Creep Strength in Grade 91 Steel
,”
Mater. Sci. Eng. A
,
528
(13–14), pp.
4390
4394
.
40.
Abe
,
F.
,
Tanaka
,
H.
, and
Murata
,
M.
,
2007
, “
Impurity Effects on Heat-to-Heat Variation in Creep Life for Some Heat Resistant Steels
,”
BALTICA VII International Conference on Life Management and Maintenance for Power Plants
, Helsinki, June 12–14, pp.
171
184
.
41.
Abe
,
F.
,
2010
, “
Heat-to-Heat Variation in Long-Term Creep Strength of Some Ferritic Steels
,”
Int. J. Pressure Vessels Piping
,
87
(
6
), pp.
310
318
.
42.
Abe
,
F.
,
2014
, “
Long-Term Creep Rupture Strength of Individual Heats and Restriction of Al Concentration in 304HTB and 316HTB Stainless Steels for Gen IV Application
,”
ASME
Paper No. PVP2014-28158.
43.
Shinya
,
N.
,
Tanaka
,
H.
,
Murata
,
M.
,
Kaise
,
M.
, and
Yokoi
,
S.
,
1985
, “
Creep Fracture Mechanism Map Based on Creep Rupture Tests up to About 100,000 h for Type 316 Stainless Steel
,”
Tetsu Hagane
,
71
(1), pp.
114
120
.
44.
Brett
,
J.
,
Bates
,
J. S.
, and
Thomson
,
R. C.
,
2004
, “
Aluminium Nitride Precipitation in Low Strength Grade 91 Power Plant Steels
,”
4th International Conference on Advances in Materials Technology for Fossil Power Plants
,
R.
Viswanathan
,
D.
Gandy
, and
K.
Coleman
, eds., Hilton Head Island, SC, Oct. 25–28, pp.
1183
1197
.
45.
Kushima
,
H.
,
Kimura
,
K.
, and
Abe
,
F.
,
1999
, “
Degradation of Mod.9Cr-1Mo Steel During Long-Term Creep Deformation
,”
Tetsu Hagane
,
85
(11), pp.
841
847
(in Japanese).
46.
Iseda
,
A.
,
Teranihsi
,
H.
, and
Masuyama
,
F.
,
1990
, “
Effect of Chemical Compositions and Heat Treatments on Creep Rupture Strength of 12 wt% Cr Heat Resistant Steels for Boiler
,”
Tetsu Hagane
,
76
, pp.
1076
1083
(in Japanese).
47.
Gabrel
,
J.
,
Bendick
,
W.
,
Zakine
,
C.
, and
Vandenberghe
,
B.
,
2007
, “
Cold Bending of Boiler Tubes in New Grades
,”
ASME
Paper No. CREEP2007-26571.
48.
Igarashi
,
M.
,
Yoshizawa
,
M.
,
Iseda
,
A.
,
Matsuo
,
H.
, and
Kan
,
T.
,
2006
, “
Long-Term Creep Strength Degradation in T122/P122 Steels for USC Power Plants
,”
8th Liege Conference on Materials for Advanced Power Engineering 2006
, Liege, Belgium, pp.
1095
1104
.
49.
Kimura
,
K.
,
Sawada
,
K.
,
Kushima
,
H.
, and
Toda
,
Y.
,
2006
, “
Degradation Behaviour and Long-Term Creep Strength of 12Cr Ferritic Creep-Resistant Steels
,”
8th Liege Conference on Materials for Advanced Power Engineering 2006
, Liege, Belgium, pp.
1105
1116
.
50.
Yaguchi
,
M.
,
Matsumura
,
T.
, and
Hoshino
,
K.
,
2012
, “
Evaluation of Long-Term Creep Strength of Welded Joints of ASME Grades 91, 92 and 122 Type Steels
,”
ASME
Paper No. PVP2012-78393.
51.
Kimura
,
K.
, and
Takahashi
,
Y.
,
2012
, “
Evaluation of Long-Term Creep Strength of ASME Grades 91, 92 and 122 Type Steels
,”
ASME
Paper No. PVP2012-78323.
52.
Francis
,
J.
,
Mazur
,
W.
, and
Bhadeshia
,
H. K. D. H.
,
2006
, “
Type IV Cracking in Ferritic Power Plant Steels
,”
Mater. Sci. Technol.
,
22
(
12
), pp.
1387
1395
.
53.
Abe
,
F.
, and
Tabuchi
,
M.
,
2004
, “
Microstructural and Creep Strength of Welds in Advanced Ferritic Power Plant Steels
,”
Mater. Sci. Technol. Weld. Joining
,
9
(
1
), pp.
22
30
.
54.
Abe
,
F.
,
Tabuchi
,
M.
, and
Tsukamoto
,
S.
,
2012
, “
Mechanisms for Boron Effect on Microstructure and Creep Strength of Ferritic Power Plant Steels
,”
Energy Mater.
,
4
, pp.
166
175
.
55.
Liu
,
Y.
,
Tsukamoto
,
S.
,
Shirane
,
T.
, and
Abe
,
F.
,
2013
, “
Formation Mechanism of Type IV Failure in High Cr Ferritic Heat-Resistant Steel-Welded Joint
,”
Metall. Mater. Trans. A
,
44A
, pp.
4626
4633
.
56.
Liu
,
Y.
,
Tsukamoto
,
S.
,
Sawada
,
K.
, and
Abe
,
F.
,
2014
, “
Role of Boundary Strengthening on Prevention of Type IV Failure in High Cr Ferritic Heat-Resistant Steels
,”
Metall. Mater. Trans. A
,
45A
, pp.
1306
1314
.
57.
Abe
,
F.
,
Tabuchi
,
M.
,
Tsukamoto
,
S.
, and
Shirane
,
T.
,
2010
, “
Microstructure Evolution in HAZ and Suppression of Type IV Fracture in Advanced Ferritic Power Plant Steels
,”
Int. J. Pressure Vessels Piping
,
87
(
11
), pp.
598
604
.
58.
Komai
,
N.
,
Masuyama
,
F.
,
Ishihara
,
I.
,
Yokoyama
,
T.
,
Yamadera
,
Y.
,
Okada
,
H.
,
Miyata
,
K.
, and
Sawaragi
,
Y.
,
1998
, “
Development and Application of 2.25Cr-1.6W (HCM2S) Steel Large Diameter and Thick Section Pipe
,”
Proceedings of the International Conference on Advanced Heat Resistant Steels for Power Generation
, San Sebastian, Spain, Apr. 27–29, The University Press, Cambridge, UK, pp.
96
108
.
59.
Sawaragi
,
Y.
,
Miyata
,
K.
,
Yamamoto
,
S.
,
Masuyama
,
F.
,
Komai
,
N.
, and
Yokoyama
,
T.
,
1998
, “
Properties After Service Exposure of 2.25Cr-1.6W-VNb (HCM2S) and 12Cr-0.4Mo-2W-1Cu-VNb (HCM12A) Steel Tubes in a Power Boiler
,”
Proceedings of the International Conference on Advanced Heat Resistant Steels for Power Generation
, San Sebastian, Spain, Apr. 27–29, The University Press, Cambridge, pp.
144
156
.
60.
Igarashi
,
M.
,
2004
, “
2.25Cr-1.6W-V-Nb Steel. Creep Properties of Heat Resistant Steels and Superalloys
,”
Landolt–Bornstein Numerical Data and Functional Relationships in Science and Technology, Group VIII: Advanced Materials and Technologies
,
K.
Yagi
,
G.
Merkling
,
T.-U.
Kern
,
H.
Irie
,
W.
Warlimont
, eds., Vol.
2
,
Springer-Verlag
,
Berlin, Heidelberg/New York
, pp.
74
83
.
61.
Paddea
,
S.
,
Masuyama
,
F.
, and
Shibli
,
A.
,
2014
, “
T23 and T24—New Generation Low Alloyed Steels
,”
Coal Power Plant Materials and Life Assessment
,
A.
Shibli
, ed.,
Woodhead Publishing Limited
,
Cambridge, UK
, pp.
87
106
.
62.
Sikka
,
V. K.
,
Klueh
,
R. L.
,
Maziasz
,
P. J.
,
Babu
,
S.
,
Santella
,
M. L.
,
Jawad
,
M. H.
,
Paules
,
J. R.
, and
Orie
,
K. E.
,
2004
, “
Mechanical Properties of New Grades of Fe-3Cr-W Alloys
,”
Am. Soc. Mech. Eng. Pressure Vessel Piping
,
476
, pp.
97
106
.
63.
Chen
,
Z.
,
Shan
,
Z.-W.
,
Wu
,
N. Q.
,
Sikka
, V
. K.
,
Hua
,
M. H.
, and
Mao
,
S. X.
,
2004
, “
Fine Carbide-Strengthened 3Cr-3WVTa Bainitic Steel
,”
Metall. Mater. Trans.
,
35A
(4), pp.
1281
1288
.
64.
Bhadeshia
,
H. K. D. H.
,
2001
, “
Design of Ferritic Creep-Resistant Steels
,”
ISIJ Int.
,
41
(
6
), pp.
626
640
.
65.
Fujita
,
N.
, and
Bhadeshia
,
H. K. D. H.
,
2002
, “
Modeling of Simultaneous Alloy Carbide Sequence in Power Plant Steels
,”
ISIJ Int.
,
42
(
7
), pp.
760
769
.
66.
Miyata
,
K.
, and
Sawaragi
,
Y.
,
2001
, “
Effect of Mo and W on the Phase Stability of Precipitates in Low Cr Heat Resistant Steels
,”
ISIJ Int.
41
(
3
), pp.
281
289
.
67.
Sikka
,
V. K.
,
1983
, “
Development of Modified 9Cr-1Mo Steel for Elevated-Temperature Service
,”
Topical Conference on Ferritic Alloys for Use in Nuclear Energy Technologies
,
J. W.
Davis
, and
D. L.
Michel
, eds., Snowbird, UT, June 19–23, pp.
317
327
.
68.
Abe
,
F.
,
2014
, “
Grade 91 Heat-Resistant Martensitic Steel
,”
Coal Power Plant Materials and Life Assessment
,
A.
Shibli
, ed.,
Woodhead Publishing Limited
,
Cambridge, UK
, pp.
3
51
.
69.
Abe
,
F.
,
2008
, “
Precipitate Design for Creep Strengthening of 9%Cr Tempered Martensitic Steel for USC Power Plant
,”
Sci. Technol. Adv. Mater.
,
9
(
1
), p.
013002
.
70.
Sato
,
T.
,
Tamura
,
K.
,
Fukuda
,
Y.
,
Asakura
,
K.
, and
Fujita
,
T.
,
2006
, “
Development of Low-C 9Cr Steel for USC Boilers
,”
CAMP-ISIJ
,
19
, p.
565
(in Japanese).
71.
Metzger
,
K.
,
Czychon
,
K. H.
,
Roos
,
E.
, and
Maile
,
K.
,
2008
, “
Testing for the Investigation of the Damage Mechanism of High-Temperature for the 700 °C Power Plant
,”
34th MPA-Seminar
, Stuttgart, Germany, pp.
48.1
48.12
.
72.
Igarashi
,
M.
, and
Sawaragi
,
Y.
,
1997
, “
Development of 0.1C-11Cr-3W-3Co-V-Nb-Ta-Nd-N Ferritic Steel for USC Boilers
,”
International Conference on Power Engineering-97 (ICOPE-97)
, Tokyo, Japan, pp.
107
112
.
73.
Mayer
,
K.-H.
, and
Masuyama
,
F.
,
2008
, “
The Development of Creep-Resistant Steels
,”
Creep-Resistant Steels
,
F.
Abe
,
T.-U.
Kern
, and
R.
Viswanathan
, eds.,
Woodhead Publishing Limited
,
Cambridge, UK
, pp.
15
77
.
74.
Miki
,
K.
,
Azuma
,
T.
,
Ishiguro
,
T.
,
Hashizume
,
R.
,
Murata
,
Y.
, and
Morinaga
,
M.
,
2002
, “
Effect of Cr Content on the Creep Strength and Microstructure Change in High Cr Heat Resistant Steel
,”
7th Liege Conference on Materials for Advanced Power Engineering 2002
, Liege, Belgium, pp.
1497
1504
.
75.
Mito
,
Y.
,
Miki
,
K.
,
Azuma
,
T.
,
Ishiguro
,
T.
,
Tamura
,
O.
,
Murata
,
Y.
, and
Morinaga
,
M.
,
2013
, “
Effect of Cr and W Content in High Cr Ferritic Heat-Resistant Steels on Long-Term Creep Rupture Strength
,”
Proceedings of 7th International Conference on Advances in Materials Technology for Fossil Power Plants
, Waikoloa, HI, ASM International, Materials Park, OH, pp.
627
636
.
76.
Kern
,
T.-U.
,
Mayer
,
K.-H.
,
Donth
,
B.
,
Zeiler
,
G.
, and
Gianfrancesco
,
A. D.
,
2010
, “
The European Efforts in Development of New High Temperature Rotor Materials—COST536
,”
9th Liege Conference on Materials for Advanced Power Engineering 2010
, Liege, Belgium, pp.
29
38
.
77.
Barnard
,
P.
,
Moody
,
P.
,
Maclachlan
,
Y.
,
Allen
,
D.
,
Robert
,
S.
,
Du
,
H.
, and
Thomson
,
R.
,
2013
, “
A New MarBN Alloy for USC Power Plant
,”
5th Symposium on Heat Resistant Steels and Alloys for High Efficiency USC/A-USC Power Plants 2013
, Seoul, Korea, p.
31
.
78.
Zanin
,
E.
,
Coda
,
E.
,
Kilgallon
,
P.
,
Lockyer
,
S.
,
Mayr
,
P.
,
Schlacher
,
C.
,
Tassa
,
O.
, and
Vanstone
,
R.
,
2014
, “
Component Performance-Driven Solutions for Long-Term Efficiency Increase in Ultra Supercritical Power Plants Macplus Project
,”
10th Liege Conference on Materials for Advanced Power Engineering 2014
, Liege, Belgium, pp.
803
819
.
79.
Sommitsch
,
C.
,
Vanstone
,
R.
,
Kern
,
T.-U.
,
Barnard
,
P.
,
Mayr
,
P.
,
Thomson
,
R.
, and
Agüero
,
A.
,
2014
, “
Co-Ordination of European Research in Structural Materials for Power Generation Equipment
,”
10th Liege Conference on Materials for Advanced Power Engineering 2014
, Liege, Belgium, pp.
3
18
.
80.
Plesiutschunig
,
E.
,
Beal
,
C.
,
Paul
,
S.
,
Zeiler
,
G.
,
Mitsche
,
S.
, and
Sommitsch
,
C.
,
2014
, “
Microstructure for an Optimized Creep Rupture Strength of High Cr Steels
,”
10th Liege Conference on Materials for Advanced Power Engineering 2014
, Liege, Belgium, pp.
180
188
.
81.
Yan
,
P.
,
Liu
,
Z.
, and
Weng
,
Y.
,
2014
, “
Effect of Preferential Heat Treatment on Microstructure of New Martensitic Heat Resistant Steel G115
,”
International Conference on Energy Materials 2014
, Xi'an, China, pp.
137
143
.
82.
Semba
,
H.
, and
Abe
,
F.
,
2006
, “
Alloy Design and Creep Strength of Advanced 9%Cr USC Boiler Steels Containing High Concentration of Boron
,”
Energy Mater.
,
1
(
4
), pp.
238
244
.
83.
Sakuraya
,
K.
,
Okada
,
H.
, and
Abe
,
F.
,
2004
, “
BN Type Inclusions Formed in High Cr Ferritic Heat Resistant Steel
,”
Tetsu Hagane
,
90
(10), pp.
819
828
.
84.
Sakuraya
,
K.
,
Okada
,
H.
, and
Abe
,
F.
,
2006
, “
BN Type Inclusions Formed in High Cr Ferritic Heat Resistant Steel
,”
Energy Mater.
,
1
(
3
), pp.
158
166
.
85.
Abe
,
F.
,
Tabuchi
,
M.
,
Tsukamoto
,
S.
, and
Liu
,
Y.
,
2013
, “
Alloy Design of Tempered Martensitic 9Cr-Boron Steel for A-USC Boilers
,”
7th EPRI Conference on Advances in Materials Technology for Fossil Power Plants
, Oct. 22–15, Materials Park, OH, pp.
1127
1138
.
86.
Abe
,
F.
,
Horiuchi
,
T.
,
Sakuraya
,
K.
,
Suzuki
,
S.
,
Tabuchi
,
M.
, and
Tsukamoto
,
S.
,
2014
, “
Characterization of Boron and Mechanisms for Boron Effects in 9Cr Steel for A-USC Boilers at 650 °C
,”
40th MPA Seminar
, Oct. 6–7, Stuttgart, Germany, pp.
57
71
.
87.
Abe
,
F.
,
Tabuchi
,
M.
, and
Tsukamoto
,
S.
,
2014
, “
Alloy Design of Martensitic 9Cr-Boron Steel for A-USC Boiler at 650 °C—Beyond Grades 91, 92 and 122
,”
Energy Materials
, Xi'an, China, Nov. 4–6, pp.
129
136
.
88.
Gu
,
Y.
,
West
,
G. D.
,
Thomson
,
R. C.
, and
Parker
,
J.
,
2013
, “
Investigation of Creep Damage and Cavitation Mechanisms in P92 Steels
,”
Proceedings of the 7th International Conference on Advances in Materials Technology for Fossil Power Plants
, Waikoloa, HI, ASM International, Materials Park, OH, pp.
596
606
.
89.
Shirane
,
T.
,
Tsukamoto
,
S.
,
Tsuzaki
,
K.
,
Adachi
,
Y.
,
Hanamura
,
T.
,
Shimizu
,
M.
, and
Abe
,
F.
,
2009
, “
Ferrite to Austenite Reverse Transformation Process in B Containing 9%Cr Heat Resistant Steel HAZ
,”
Sci. Technol. Weld. Joining
,
14
(
8
), pp.
698
707
.
90.
Karsson
,
L.
, and
Norden
,
H.
,
1988
, “
Non-Equilibrium Grain Boundary Segregation of Boron in Austenitic Stainless Steels-II. Fine Segregation Behavior
,”
Acta Metall.
,
36
(
1
), pp.
13
24
.
91.
Tabuchi
,
M.
,
Hongo
,
H.
, and
Abe
,
F.
,
2014
, “
Creep Strength of Dissimilar Welded Joints Using High-B-9Cr Steel for Advanced USC Boiler
,”
Metall. Mater. Trans. A
,
45A
, pp.
5068
5075
.
92.
Masuyama
,
F.
,
2006
, “
Advanced Power Plant Developments and Material Experiences in Japan
,”
8th Liege Conference on Materials for Advanced Power Engineering 2006
, Liege, Belgium, pp.
175
187
.
93.
Semba
,
H.
,
Sawaragi
,
Y.
,
Ogawa
,
K.
,
Natori
,
A.
, and
Kan
,
T.
,
2002
, “
Development of SUPER304H Austenitic Stainless Steel Tubes With High Temperature Strength for USC Boilers
,”
Materia
,
41
, pp.
120
122
(in Japanese).
94.
Hirano
,
S.
, and
Sawaragi
,
Y.
,
1988
, “
Effect of Alloying Elements on Elevated-Temperature Strength and Microstructure of 18Cr-10Ni Stainless Steel
,”
Report of the 123rd Committee on Heat-Resisting Materials and Alloys, Japan Society for the Promotion of Science
, Tokyo, Japan, Vol.
29
, pp.
241
254
(in Japanese).
95.
Sawaragi
,
Y.
,
Hirano
,
S.
,
Natori
,
A.
, and
Masuyama
,
F.
,
1992
, “Properties after Service Exposure of a New 18-8 Austenitic Steel Tube (0.1C-18Cr-9Ni-3Cu-Nb, N) With High Elevated Temperature Strength for Fossil Fired Boilers,”
1st International Conference on Microstructures and Mechanical Properties of Aging Materials
, Chicago, IL, Nov. 2–5, pp.
179
186
.
96.
Semba
,
H.
,
Okada
,
H.
,
Yonemura
,
M.
, and
Igarashi
,
M.
,
2008
, “
Creep Strength and Microstructure in 23Cr-43Ni-7W Alloy (HR6W) and Ni-Base Superalloys for Advanced USC Boilers
,”
34th MPA-Seminar
, Stuttgart, Germany, pp.
14.1
14.18
.
97.
Shingledecker
,
J. P.
,
Maziasz
,
P. J.
,
Evans
,
N. D.
, and
Pollard
,
M. J.
,
2005
, “
Creep Behavior of a New Cast Austenitic Alloy
,”
International Conference on Creep and Fracture in High Temperature Components (1st ECCC Creep Conference)
, London, UK, pp.
99
109
.
98.
Yamamoto
,
Y.
,
Brady
,
M. P.
,
Lu
,
Z. P.
,
Maziasz
,
P. J.
,
Liu
,
C. T.
,
Pint
,
B. A.
,
More
,
K. L.
,
Meyer
,
H. M.
, and
Payzant
,
E. A.
,
2007
, “
Creep-Resistant, Al2O3-Forming Austenitic Stainless Steels
,”
Science
,
316
(
5823
), pp.
433
436
.
99.
Tarigan
,
I.
,
Takata
,
N.
, and
Takeyama
,
M.
,
2012
, “
Grain Boundary Precipitation Strengthening Mechanism by Fe2Nb Laves Phase in Creep of Fe-20Cr-30Ni-2Nb Austenitic Heat Resistant Steel
,”
Proceedings of the Creep and Fracture of Engineering Materials and Structures
, CD-ROM, The Japan Institute of Metals, Sendai, Japan.
100.
Takeyama
,
M.
,
Tarigan
,
I.
,
Takata
,
N.
, and
Ueda
,
M.
,
2014
, “
Grain Boundary Precipitation Strengthening Mechanism by Fe2Nb Laves Phase in Creep of Fe-20Cr-30Ni-2Nb Austenitic Heat Resistant Steel
,”
International Conference on Creep and Fracture in High Temperature Components
(3rd
ECCC
Creep Conference), Rome, Italy.
You do not currently have access to this content.