It is generally accepted that the presence of imperfections in pressure vessel components can significantly reduce their buckling strength. In fact, the discrepancies between theoretical predictions and experimental results have been attributed to various kinds of existing and unavoidable imperfections. This is not a new problem but despite of substantial research effort in this area over the recent decades, it is far from being satisfactorily resolved. This review provides insight into the past findings and current activities related to the role of different types of imperfections on the buckling strength. It aims to contribute to a better understanding of the influence of imperfections on the structural stability of cones, cylinders, and domes when these are subjected to external loading conditions. The review concentrates not only on the prominent role of initial geometric imperfections of the shell's generator but also on less known defects. This includes uneven axial length of cylinders, eccentricities, and nonuniformities of applied load, inaccurately modeled boundary conditions, corrosion of the wall, influence of material discontinuity or crack, and effect of prebuckling deformation. The study examines: (i) how the data were obtained (analytically, experimentally, and/or numerically), (ii) the type of material from which the shell structures were made, and (iii) the importance of findings of the previous works. Metallic and composite components are considered.

References

1.
Wunderlich
,
W.
, and
Albertin
,
U.
,
1998
, “
Analysis and Load Carrying Behaviour of Imperfection Sensitive Shells
,”
Computational Mechanics: New Trends and Applications
,
S.
Idelsohn
,
E.
Oñate
, and
E.
Dvorkin
, eds., International Centre for Numerical Methods in Engineering,
Barcelona, Spain
.
2.
Teng
,
J. G.
, and
Rotter
,
J. M.
,
2004
, “
Buckling of Thin Shells
,”
Buckling of Thin Metal Shells
,
J. G.
Teng
and
J. M.
Rotter
, eds.,
Spon Press
,
London
, pp.
1
41
.
3.
Weingarten
,
V. I.
,
Seide
,
P.
, and
Peterson
,
J. P.
,
1968
, “
Buckling of Thin-Walled Circular Cylinders
,” National Aeronautics and Space Administration, Washington DC, Technical Report No.
NASA SP-8007
.
4.
ASME
,
2008
, “
Alternative Rules for Determining Allowable External Pressure and Compressive Stresses for Cylinders, Cones, Sphere and Formed Heads, Section VIII, Divisions 1 and 2
,”
Cases of the ASME Boiler and Pressure Vessel Code
, American Society of Mechanical Engineers, New York, Standard No. Code Case 2286-2.
5.
ECCS
,
2008
, “
Buckling of Steel Shells – European Design Recommendations
,”
ECCS TC8 TWG 8.4 Shells
, Vol.
125
, 5th ed.,
Multicomp Lda, Algueirão-Mem Martins
,
Portugal
, p.
384
.
6.
Casado
,
V. M.
,
Hinsch
,
S.
,
Garcia
,
J. G.
, and
Castro
,
S. G. P.
,
2014
, “
Effect of Initial Geometrical Imperfection on the Buckling Load of Cylindrical Sandwich Shells Under Axial Compression
,”
13th European Conference on Spacecraft Structures, Material and Environmental Testing
(
ESA-SP
), Braunschweig, Germany, Apr. 1–4, pp.
1
10
.
7.
Degenhardt
,
R.
,
2014
, “
New Robust Design Guideline for Imperfection Sensitive Composite Launcher Structures
,”
13th European Conference on Spacecraft Structures, Materials and Environmental Testing (ESA-SP)
, Braunschweig, Germany, Apr. 1–4, pp.
1
6
.
8.
Hilburger
,
M. W.
,
2012
, “
Developing the Next Generation Shell Buckling Design Factors and Technologies
,”
AIAA
Paper No. 2012-1686.
9.
Huhne
,
C.
,
Rolfes
,
R.
,
Breitbach
,
E.
, and
Tessmer
,
J.
,
2008
, “
Robust Design of Composite Cylindrical Shells Under Axial Compression—Simulation and Validation
,”
Thin-Walled Struct.
,
46
(
7–9
), pp.
947
962
.
10.
Castro
,
G. P.
,
Zimmermann
,
R.
,
Arbelo
,
M. A.
,
Khakimova
,
R.
,
Hilburger
,
M. W.
, and
Degenhardt
,
R.
,
2013
, “
Geometric Imperfections and Lower-Bound Methods Used to Calculate Knock-down Factors for Axially Compressed Composite Cylindrical Shells
,”
Thin-Walled Struct.
,
74
, pp.
118
132
.
11.
Singer
,
J.
,
1980
, “
Buckling Experiments on Shell—A Review of Recent Development
,” Department of Aeronautical Engineering, Technion, Haifa, Israel, Report No. 403.
12.
Singer
,
J.
, and
Abramovich
,
H.
,
1995
, “
The Development of Shell Imperfection Measurement Techniques
,”
Thin-Walled Struct.
,
23
(
1–4
), pp.
379
398
.
13.
Jabareen
,
M.
, and
Sheinman
,
I.
,
2009
, “
Stability of Imperfect Stiffened Conical Shells
,”
Int. J. Solids Struct.
,
46
(
10
), pp.
2111
2125
.
14.
Goldfeld
,
Y.
,
Sheinman
,
I.
, and
Baruch
,
M.
,
2003
, “
Imperfection Sensitivity of Conical Shells
,”
AIAA J.
,
41
(
3
), pp.
517
524
.
15.
Ifayefunmi
,
O.
,
2014
, “
A Survey of Buckling of Conical Shells Subjected to Axial Compression and External Pressure
,”
J. Eng. Sci. Technol. Rev.
,
7
(
2
), pp.
182
189
.
16.
Ifayefunmi
,
O.
,
2011
, “
Combined Stability of Conical Shells
,”
Ph.D. thesis
, University of Liverpool, Liverpool, UK.
17.
Chryssanthopoulos
,
M. K.
,
Poggi
,
C.
, and
Spagnoli
,
A.
,
1998
, “
Buckling Design of Conical Shells Based on Validated Numerical Models
,”
Thin-Walled Struct.
,
31
(
1–3
), pp.
257
270
.
18.
Jabareen
,
M.
, and
Sheinman
,
I.
,
2006
, “
Postbuckling Analysis of Geometrically Imperfect Conical Shells
,”
ASCE J. Eng. Mech.
,
132
(
12
), pp.
1326
1334
.
19.
Błachut
,
J.
,
2012
, “
Interactive Plastic Buckling of Cones Subjected to Axial Compression and External Pressure
,”
Ocean Eng.
,
48
, pp.
10
16
.
20.
Zielnica
,
J.
,
2002
, “
Imperfection Sensitivity and Stability of an Elastic-Plastic Conical Shell Under Axisymmetrical Load
,”
Archive Appl. Mech.
,
72
(
6–7
), pp.
395
417
.
21.
Ifayefunmi
,
O.
, and
Błachut
,
J.
,
2011
, “
The Effect of Shape, Boundary and Thickness Imperfections on Plastic Buckling of Cones
,”
ASME
Paper No. OMAE2011-49055.
22.
Ifayefunmi
,
O.
, and
Błachut
,
J.
,
2013
, “
Instabilities in Imperfect Thick Cones Subjected to Axial Compression and External Pressure
,”
Mar. Struct.
,
33
, pp.
297
307
.
23.
Błachut
,
J.
,
2013
, “
Combined Stability of Geometrically Imperfect Conical Shells
,”
Thin-Walled Struct.
,
67
, pp.
121
128
.
24.
Błachut
,
J.
,
2012
, “
Buckling of Truncated Cones With Localized Imperfections
,”
ASME
Paper No. PVP2012-78374.
25.
Goldfeld
,
Y.
,
2007
, “
Imperfection Sensitivity of Laminated Conical Shells
,”
Int. J. Solids Struct.
,
44
(
3–4
), pp.
1221
1241
.
26.
Castro
,
S. G. P.
,
Mittelstedt
,
C.
,
Monteiro
,
F. A. C.
,
Degenhardt
,
R.
, and
Ziegmann
,
G.
,
2015
, “
Evaluation of Non-Linear Buckling Loads of Geometrically Imperfect Composite Cylinders and Cones With the Ritz Method
,”
Compos. Struct.
,
122
, pp.
284
299
.
27.
Khakimova
,
R.
,
Warren
,
C. J.
,
Zimmermann
,
R.
,
Castro
,
S. G. P.
,
Arbelo
,
M. A.
, and
Degenhardt
,
R.
,
2014
, “
The Single Perturbation Load Approach Applied to Imperfection Sensitive Conical Composite Structures
,”
Thin-Walled Struct.
,
84
, pp.
369
377
.
28.
Spagnoli
,
A.
,
2003
, “
Koiter Circles in the Buckling of Axially Compressed Conical Shells
,”
Int. J. Solids Struct.
,
40
(
22
), pp.
6095
6109
.
29.
Chryssanthopoulos
,
M. K.
, and
Spagnoli
,
A.
,
1997
, “
The Influence of Radial Edge Constraint on the Stability of Stiffened Conical Shells in Compression
,”
Thin-Walled Struct.
,
27
(
2
), pp.
147
163
.
30.
Castro
,
S. G. P.
,
Mittelstedt
,
C.
,
Monteiro
,
F. A. C.
,
Arbelo
,
M. A.
,
Ziegmann
,
G.
, and
Degenhardt
,
R.
,
2014
, “
Linear Buckling Predictions of Unstiffened Laminated Composite Cylinders and Cones Under Various Loading and Boundary Conditions Using Semi-Analytical Models
,”
Compos. Struct.
,
118
, pp.
303
315
.
31.
Goldfeld
,
Y.
, and
Arbocz
,
J.
,
2004
, “
Buckling of Laminated Conical Shells Given the Variations of the Stiffness Coefficients
,”
AIAA J.
,
42
(
3
), pp.
642
649
.
32.
Ifayefunmi
,
O.
, and
Chang
,
K. L.
,
2016
, “
The Influence of Boundary Condition on the Deformed Shape of Axially Compressed Cones
,” Mechanical Engineering Research Day (
MERD
), Melaka, Malaysia, Mar. 31, pp.
155
156
.
33.
Jabareen
,
M.
, and
Sheinman
,
I.
,
2006
, “
Effect of the Nonlinear Pre-Buckling State on the Bifurcation Point of Conical Shells
,”
Int. J. Solids Struct.
,
43
(
7–8
), pp.
2146
2159
.
34.
Ifayefunmi
,
O.
,
2013
, “
Effect of Prebuckling and Edge Support on Bifurcation Buckling of Torisphere, Cylinder and Cone
,”
J. Eng. Technol.
,
4
(2), pp.
137
148
.
35.
Ali
,
D.
,
2013
, “
Buckling of Cracked Conical Frusta Under Axial Compression
,”
Res. J. Recent Sci.
,
2
(2), pp.
33
39
.
36.
Ifayefunmi
,
O.
,
2017
, “
Plastic Buckling of Conical Shell With Non-Continuous Edge Support
,”
Int. J. Mech. Mechatronics Eng.
,
17
(1), pp.
143
152
.
37.
Zhao
,
Y.
, and
Teng
,
J. G.
,
2004
, “
Buckling Experiments on Steel Silo Transition Junctions. II: Finite Element Modelling
,”
J. Constr. Steel Res.
,
60
(
12
), pp.
1803
1823
.
38.
Ifayefunmi
,
O.
, and
Błachut
,
J.
,
2012
, “
Combined Stability of Unstiffened Cones—Theory, Experiments and Design Codes
,”
Int. J. Pressure Vessels Piping
,
93–94
, pp.
57
68
.
39.
Simitses
,
G. J.
,
1986
, “
Buckling and Postbuckling of Imperfect Cylindrical Shells: A Review
,”
ASME Appl. Mech. Rev.
,
39
(
10
), pp.
1517
1524
.
40.
Friedrich
,
L.
, and
Reimerdes
,
H. G.
,
2013
, “
Imperfection Sensitivity of Circular Cylindrical Shells of Varying Length Subjected to Axial Compression
,”
AIAA
Paper No. AIAA 2013-1771.
41.
Khamlichi
,
A.
,
Bezzazi
,
M.
, and
Limam
,
A.
,
2004
, “
Buckling of Elastic Cylindrical Shells Considering the Effect of Localized Axisymmetric Imperfections
,”
Thin-Walled Struct.
,
42
(
7
), pp.
1035
1047
.
42.
Kriegesmann
,
B.
,
Hilburger
,
M. W.
, and
Rolfes
,
R.
,
2012
, “
The Effects of Geometric and Loading Imperfections on the Response and Lower-Bound Buckling Load of a Compression-Loaded Cylindrical Shell
,”
AIAA
Paper No. 2012-1864.
43.
Song
,
C. Y.
,
Teng
,
J. G.
, and
Rotter
,
J. M.
,
2004
, “
Imperfection Sensitivity of Thin Elastic Cylindrical Shells Subjected to Partial Axial Compression
,”
Int. J. Solids Struct.
,
41
(
24–25
), pp.
7155
7180
.
44.
Błachut
,
J.
,
2010
, “
Buckling of Axially Compressed Cylinders With Imperfect Length
,”
Comput. Struct.
,
88
(
5–6
), pp.
365
374
.
45.
Błachut
,
J.
,
2015
, “
Buckling of Cylinders With Imperfect Length
,”
ASME J. Pressure Vessel Technol.
,
137
(
1
), p.
011203
.
46.
Cai
,
M.
,
Holst
,
J. M. F. G.
, and
Rotter
,
J. M.
,
2002
, “
Buckling Strength of Thin Cylindrical Shells Under Localised Axial Compression
,”
15th ASCE Engineering Mechanics Conference
, New York, June 2–5, pp.
99
100
.
47.
Schmidt
,
H.
,
2000
, “
Stability of Steel Shell Structures General Report
,”
J. Constr. Steel Res.
,
55
(
1–3
), pp.
159
181
.
48.
Mao
,
R.
, and
Lu
,
G.
,
2002
, “
A Study of Elastic-Plastic Buckling of Cylindrical Shells Under Torsion
,”
Thin-Walled Struct.
,
40
(
12
), pp.
1051
1071
.
49.
Jahromi
,
B. H.
, and
Vaziri
,
A.
,
2012
, “
Instability of Cylindrical Shells With Single and Multiple Cracks Under Axial Compression
,”
Thin-Walled Struct.
,
54
, pp.
35
43
.
50.
Kim
,
Y. T.
,
2011
, “
Buckling of a Cracked Cylindrical Shell Reinforced With an Elastic Liner
,”
Master's theses
, Northeastern University, Boston, MA.
51.
Kim
,
Y. T.
,
Haghpanah
,
B.
,
Ghosh
,
R.
,
Ali
,
H.
,
Hamouda
,
A. M. S.
, and
Vaziri
,
A.
,
2013
, “
Instability of a Cracked Cylindrical Shell Reinforced by an Elastic Liner
,”
Thin-Walled Struct.
,
70
, pp.
39
48
.
52.
Vaziri
,
A.
, and
Estekanchi
,
H. E.
,
2006
, “
Buckling of Cracked Cylindrical Thin Shells Under Combined Internal Pressure and Axial Compression
,”
Thin-Walled Struct.
,
44
(
2
), pp.
141
151
.
53.
Shariati
,
M.
,
Sedighi
,
M.
,
Saemi
,
J.
,
Eipakchi
,
H. R.
, and
Allahbakhsh
,
H. R.
,
2010
, “
Numerical and Experimental Investigation on Ultimate Strength of Cracked Cylindrical Shells Subjected to Combined Loading
,”
Mechanika
,
84
(
2
), pp.
12
19
.
54.
Ifayefunmi
,
O.
, and
Sheikh Md. Fadzullah
,
S. H.
,
2017
, “
Buckling Behavior of Imperfect Axially Compressed Cylinder With Axial Crack
,”
Int. J. Automot. Mech. Eng.
,
14
(
2
), pp.
3837
3848
.
55.
Ifayefunmi
,
O.
,
2016
, “
The Effect of Axial Crack on the Buckling Behavior of Axially Compressed Cylinders
,”
Int. J. Mech. Mechatronics Eng.
,
16
(6), pp.
12
17
.
56.
Ifayefunmi
,
O.
, and
Hap
,
L. K.
,
2016
, “
The Effect of Material Discontinuity on the Flanges of Axially Compressed Cylinder
,”
J. Mech. Eng. Sci.
,
10
(2), pp.
2084
2097
.
57.
Błachut
,
J.
,
1987
, “
Combined Axial and Pressure Buckling of Shells Having Optimal Positive Gaussian Curvature
,”
Comput. Struct.
,
26
(
3
), pp.
513
519
.
58.
Błachut
,
J.
,
2003
, “
Optimal Barrelling of Steel Shells Via Simulated Annealing Algorithm
,”
Comput. Struct.
,
81
(
18–19
), pp.
1941
1956
.
59.
Błachut
,
J.
,
2002
, “
Buckling of Externally Pressurised Barrelled Shells: A Comparison of Experiment and Theory
,”
Int. J. Pressure Vessels Piping
,
79
(
7
), pp.
507
517
.
60.
Gettel
,
M.
, and
Schneider
,
W.
,
2007
, “
Buckling Strength Verification of Cantilevered Cylindrical Shells Subjected to Transverse Load Using Eurocode 3
,”
J. Constr. Steel Res.
,
63
(
11
), pp.
1467
1478
.
61.
Galletly
,
G. D.
, and
Błachut
,
J.
,
1985
, “
Plastic Buckling of Short Vertical Cylindrical Shells Subjected to Horizontal Edge Shear Loads
,”
ASME J. Pressure Vessel Technol.
,
107
(
2
), pp.
101
106
.
62.
Błachut
,
J.
,
2008
, “
Elastic Buckling of Vertical Cantilevered Cylinders
,”
J. Theor. Appl. Mech.
,
46
(4), pp.
741
761
.
63.
Da Silva
,
A.
,
Didier
,
J.
,
Limam
,
A.
, and
Błachut
,
J.
,
2018
, “
Buckling of Pressurised Thin Cylindrical Shells Under a Transverse Shear Load
,”
Int. J. Solids Struct.
(to be submitted).
64.
Combescure
,
A.
, and
Jullien
,
J. F.
,
2017
, “
Creep Buckling of Cylinders Under Uniform External Pressure: Modelling and Experiments
,”
Int. J. Solids Struct.
,
124
, pp.
14
25
.
65.
De Vries
,
J.
,
2009
, “
The Imperfection Data Bank and Its Applications
,”
Ph.D. thesis
, Delft University, Delft, The Netherlands.
66.
De Paor
,
C.
,
2012
, “
The Effect of Random Geometric Imperfections on the Buckling of Thin Cylindrical Shells Due to External Pressure
,” Ph.D. thesis, University College Cork, Cork, Ireland.
67.
Didier
,
J.
,
2014
, “
Buckling of Multi-Layered Foam Aluminium Cylindrical Shell Structure Submitted to Combined Internal Pressure, Shearing, and Bending Loads
,” Ph.D. thesis, National Institute of Applied Sciences of Lyon, Villeurbanne, France (in French).
68.
Zia Ul Rehman
,
T.
,
2016
, “
Buckling of Thin Cylindrical Shells Under Axial Compression
,” Ph.D. thesis, University of Manchester, Manchester, UK.
69.
Mackerle
,
J.
,
1996
, “
Finite Elements in the Analysis of Pressure Vessels and Piping: A Bibliography 1976–1996
,”
Int. J. Pressure Vessels Piping
,
69
(
3
), pp.
279
339
.
70.
Teng
,
J. G.
,
1996
, “
Buckling of Thin Shells: Recent Advances and Trends
,”
ASME Appl. Mech. Rev.
,
49
(
4
), pp.
263
274
.
71.
Krivoshapko
,
S. N.
,
2007
, “
Research on General and Axisymmetric Ellipsoidal Shells Used as Domes, Pressure Vessels, and Tanks
,”
ASME Appl. Mech. Rev.
,
60
(
6
), pp.
336
355
.
72.
Błachut
,
J.
, and
Magnucki
,
K.
,
2008
, “
Strength, Stability and Optimization of Pressure Vessels: Review of Selected Problems
,”
ASME Appl. Mech. Rev.
,
61
, p.
060801
.
73.
Spence
,
J.
, and
Tooth
,
A. S.
, eds.,
1994
,
Pressure Vessel Design, Concepts and Principles
,
E & FN Spon
,
London
.
74.
Nash
,
W. A.
,
1995
,
Hydrostatically Loaded Structures
,
Pergamon Press
,
New York
.
75.
Ross
,
C. T. F.
,
2001
,
Pressure Vessel—External Pressure Technology
,
Horwood Publishing
,
Chichester, UK
.
76.
Singer
,
J.
,
Arbocz
,
J.
, and
Weller
,
T.
,
2002
,
Buckling Experiments—Experimental Methods in Buckling of Thin-Walled Structures
, Vol.
2
,
Wiley
,
New York
.
77.
Błachut
,
J.
,
Galletly
,
G. D.
, and
Moreton
,
D. N.
,
1990
, “
Buckling of Near-Perfect Steel Torispherical and Hemispherical Shells Subjected to External Pressure
,”
AIAA J.
,
28
(
11
), pp.
1971
1975
.
78.
Błachut
,
J.
,
2014
, “
Experimental Perspective on the Buckling of Pressure Vessel Components
,”
ASME Appl. Mech. Rev.
,
66
(
1
), p.
011003
.
79.
Nanba
,
N.
,
Morihana
,
H.
,
Nakamura
,
E.
, and
Watanabe
,
N.
,
1990
, “
Development of Deep Submergence Research Vehicle SHINKAI 6500
,”
Mitsubishi Heavy Ind. Tech. Rev.
,
27
(3), pp.
157
168
.
80.
Błachut
,
J.
,
2010
, “
Developments in Strength and Stability of Shell Components Used in Submersibles
,”
‘Shell Structures—Theory and Applications'
,
W.
Pietraszkiewicz
and
I.
Kreja
, eds., Vol.
3
,
Taylor & Francis
,
London/Leiden
, pp.
3
10
.
81.
Zhang
,
J.
,
Zhu
,
B.
,
Wang
,
F.
,
Tang
,
W.
,
Wang
,
W.
, and
Zhang
,
M.
,
2017
, “
Buckling of Prolate Egg-Shaped Domes Under Hydrostatic External Pressure
,”
Thin-Walled Struct.
,
119
, pp.
296
303
.
82.
Newland
,
C. N.
,
1972
, “
Collapse of Domes Under External Pressure
,”
Institution of Mechanical Engineers Conference on Vessels Under Buckling Conditions
, London, Dec., Paper No. C191/72.
83.
BSI
,
2005
, “
Specification for Unfired Fusion Welded Pressure Vessels
,” British Standards Institution, London, Standard No. BSI PD5500.
84.
Eggwertz
,
S. F.
, and
Samuelson
,
L. A.
,
1990
, “
Buckling Strength of Spherical Shells
,”
J. Constr. Steel
,
17
(
3
), pp.
195
216
.
85.
Moffat
,
D. G.
,
Błachut
,
J.
,
James
,
S.
, and
Galletly
,
G. D.
,
1992
, “
Collapse of Externally Pressurised Petal-Welded Torispherical and Hemispherical Pressure Vessel End-Closures
,”
Pressure Vessel Technology
, Vol.
1
, VdTuV, Essen, Germany, Report No. ICPVT-7, pp.
119
137
.
86.
Błachut
,
J.
, and
Galletly
,
G. D.
,
1995
, “
Buckling Strength of Imperfect Steel Hemispheres
,”
Thin-Walled Struct.
,
23
(
1–4
), pp.
1
20
.
87.
Błachut
,
J.
,
1998
, “
Buckling of Sharp Knuckle Torispheres Under External Pressure
,”
Thin-Walled Struct.
,
30
(
1–4
), pp.
55
77
.
88.
Błachut
,
J.
, and
Galletly
,
G. D.
,
1993
, “
Influence of Local Imperfections on the Collapse Strength of Domed End Closures
,”
Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci.
,
207
, pp.
197
207
.
89.
Błachut
,
J.
,
2015
, “
Locally Flattened or Dented Domes Under External Pressure
,”
Thin-Walled Struct.
,
97
, pp.
44
52
.
90.
Błachut
,
J.
,
2016
, “
Buckling of Composite Domes With Localised Imperfections and Subjected to External Pressure
,”
Compos. Struct.
,
153
, pp.
746
754
.
You do not currently have access to this content.