Abstract

Increased interest in compact heat exchangers (CHXs) to serve as intermediate heat exchangers of very high temperature reactors resulted in significant research and development on their design, analysis, and construction. Printed circuit heat exchangers are a type of CHXs with high thermal efficiency and compactness achieved through diffusion bonding a stack of etched plates with millimeter scaled channels. The diffusion bonding process changes the microstructural and mechanical properties of the wrought metal plates. The current nonnuclear design code ASME section VIII, division 1 captures the material property change through a “joint efficiency factor.” However, the current nuclear design code ASME section III, division 5 does not address or support the diffusion bonded material properties. Hence, there is a need to develop allowable stresses, isochronous curves, and fatigue life curves for various diffusion bonded alloys. In this study, Alloy 800H material was selected to establish the diffusion bonded material properties under tension, creep, fatigue, and creep-fatigue loads at elevated temperatures in the range 550–760 °C. A set of tests on diffusion bonded Alloy 800H (DB 800H) were performed and the acquired data are used in developing allowable stresses Sy, Su, Sr, Sm, St, Smt, So, isochronous curves and fatigue life curves according to the ASME section III, division 5 requirements. This paper also presents detailed procedures used in developing the ASME code section III division 5 design provisions for diffusion bonded Alloy 800H.

References

1.
U.S. DOE OSTI,
2002
, “
A Technology Roadmap for Generation IV Nuclear Energy Systems
,” U.S. Department of Energy Office of Scientific and Technical Information, Oak Ridge, TN, accessed Mar. 21, 2022,
https://www.osti.gov/servlets/purl/859029
2.
Collins
,
J.
,
2009
, “
Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward
,” Idaho National Laboratory, Idaho Falls, ID, Report No. INL/EXT-08-15148.
3.
Sabharwall
,
P.
,
Kim
,
E. S.
,
Siahpush
,
A.
, and
Patterson
,
M.
,
2012
, “
Preliminary Design for Conventional and Compact Secondary Heat Exchanger in a Molten Salt Reactor
,”
ASME
Paper No. HT2012-58007.10.1115/HT2012-58007
4.
Ravindran
,
P.
,
Sabharwall
,
P.
, and
Anderson
,
N. A.
,
2010
, “
Modeling a Printed Circuit Heat Exchanger With REPAL5-3d for the Next Generation Nuclear Plant
,” Idaho National Laboratory, Idaho Falls, ID, Report No.
INL/EXT-10-20619
.https://inldigitallibrary.inl.gov/sites/sti/sti/4731815.pdf
5.
Oh
,
C. H.
, and
Kim
,
E. S.
,
2008
, “
Design Option of Heat Exchanger for the Next Generation Nuclear Plant
,”
ASME
Paper No. HTR2008-58175.10.1115/HTR2008-58175
6.
Mylavarapu
,
S. K.
,
Sun
,
X.
,
Christensen
,
R. N.
,
Unocic
,
R. R.
,
Glosup
,
R. E.
, and
Patterson
,
M. W.
,
2012
,
Fabrication and Design Aspects of High-Temperature Compact Diffusion Bonded Heat Exchangers
, Vol.
249
,
Elsevier
, Amsterdam, The Netherlands, pp.
49
56
.
7.
Sabharwall
,
P.
,
Clark
,
D. E.
,
Mizia
,
R. E.
,
Glazoff
,
M. V.
, and
McKellar
,
M. G.
,
2013
, “
Diffusion-Welded Microchannel Heat Exchanger for Industrial Processes
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
1
), p.
011009
.10.1115/1.4007578
8.
Li
,
X.
,
Kininmont
,
D.
,
Le Pierres
,
R.
, and
Dewson
,
S. J.
,
2008
, “
Alloy 617 for the High Temperature Diffusion-Bonded Compact Heat Exchangers
,”
Proceedings of ICAPP
, Vol.
8
, Anaheim, CA, June 8–12, pp.
282
288
.https://www.heatric.com/app/uploads/2018/04/Alloy-617-for-the-high-temperature-diffusionbonded-compact-heat-exchangers.pdf
9.
Sah
,
I.
,
Kim
,
D.
,
Lee
,
H. J.
, and
Jang
,
C.
,
2013
,
The Recovery of Tensile Ductility in Diffusion-Bonded ni-Base Alloys by Post-Bond Heat Treatments
, Vol.
47
,
Elsevier
, Amsterdam, The Netherlands, pp.
581
589
.
10.
Rozman
,
K.
,
Carl
,
M.
,
Kapoor
,
M.
,
Doğan
,
Ö.
, and
Hawk
,
J.
,
2019
,
Creep Performance of Transient Liquid Phase Bonded Haynes 230 Alloy
, Vol.
768
,
Elsevier
, Amsterdam, The Netherlands, p.
138477
.
11.
Mahajan
,
H. P.
,
Lima
,
L. M. A.
, and
Hassan
,
T.
,
2022
, “
Mechanical and Microstructural Performance Evaluation of Diffusion Bonded Alloy 800H for Very High Temperature Nuclear Service
,”
J. Eng. Mater. Technol.
,
144
(
2
), p.
11
.10.1115/1.4052825
12.
ASME
,
2017
, “
ASME Boiler & Pressure Vessel Code Section III Division 5
,”
ASME
, New York, Standard.
13.
Keating
,
R.
,
Nestell
,
J.
,
McKillop
,
S.
,
Allen
,
T.
, and
Anderson
,
M.
,
2019
, “
Potential ASME Code Case for Construction of Compact Heat Exchangers in High Temperature Reactors
,” Proceedings of the International Conference on Nuclear Engineering (
ICONE
), The Japan Society of Mechanical Engineers, Tsukuba, Japan, May 19–24, p.
1138
.10.1299/jsmeicone.2019.27.1138
14.
ASME
,
2017
, “
ASME Boiler & Pressure Vessel Code, Section VIII Division 1
,”
ASME
, New York, Standard.
15.
ASME
,
2017
, “
ASME Boiler & Pressure Vessel Code, Section II Part D
,”
ASME
, New York, Standard.
16.
ASME
,
2016
,
Fitness-For-Service
,
ASME
, New York, Standard No. API 579-1/ASME FFS-1.
17.
Swindeman
,
R. W.
,
Swindeman
,
M. J.
,
Roberts
,
B. W.
,
Thurgood
,
B. E.
, and
Marriott
,
D. L
,
2007
, “
Verification of Allowable Stresses in ASME Section III Subsection NH For Grade 91 Steel & Alloy 800H
,” ASME, New York.10.2172/974278
18.
Swindeman
,
R. W.
,
Zamrik
,
S. Y.
, and
Maziasz
,
P. J.
,
2007
, “
Effects of Long-Term Service on the Microstructure and Tensile Properties of Alloy 800H
,”
ASME
Paper No. PVP2007-26167.https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1079.7874&rep=rep1&type=pdf
19.
Abe
,
F.
,
Tabuchi
,
M.
, and
Hayakawa
,
M.
,
2017
, “
Influence of Data Scattering on Estimation of 100,000 Hrs Creep Rupture Strength of Alloy 617 at 700 c by Larson–Miller Method
,”
ASME J. Pressure Vessel Technol.
, 139(1), p.
011403
.10.1115/1.4033290
20.
Messner
,
M.
,
Jetter
,
R.
, and
Sham
,
T.-L.
,
2020
, “
A High Temperature Primary Load Design Method Based on Elastic Perfectly-Plastic and Simplified Inelastic Analysis
,”
ASME
Paper No. PVP2020-21470.10.1115/PVP2020-21470
You do not currently have access to this content.