Abstract

Use of corrosion-resistant cladding can greatly extend the design life of structural components in many advanced reactor systems. However, there are currently no ASME design rules for cladded components to guard against creep-fatigue failure and ratcheting strain accumulation in elevated temperature nuclear service. This paper, presented in two parts, addresses this gap by proposing a design strategy for cladded components that do not require long-term testing of clad materials. The proposed approach relies on approximate design analysis methods for two types of clad materials—a soft clad that creeps much faster than and has lower yield stress than the class A base material and a hard clad that creeps much slower than and has higher yield stress than the class A base material. Part I discusses the approximate analysis strategies for the clad materials—treat a soft clad as perfectly compliant and a hard clad as linear elastic—and Part II develops a complete set of design rules for each of the two types of cladded components. Finite element analyses of representative high temperature reactor components show that the proposed design analysis methods can bound the design quantities in soft cladded components and approximate the design quantities in hard cladded components.

References

1.
Murty
,
K. L.
, and
Charit
,
I.
,
2008
, “
Structural Materials for Gen-IV Nuclear Reactors: Challenges and Opportunities
,”
J. Nucl. Mater.
,
383
(
1–2
), pp.
189
195
.10.1016/j.jnucmat.2008.08.044
2.
Chant
,
I.
, and
Murty
,
K. L.
,
2010
, “
Structural Materials Issues for the Next Generation Fission Reactors
,”
JOM
,
62
(
9
), pp.
67
74
.10.1007/s11837-010-0142-3
3.
Serp
,
J.
,
Allibert
,
M.
,
Beneš
,
O.
,
Delpech
,
S.
,
Feynberg
,
O.
,
Ghetta
,
V.
,
Heuer
,
D.
, et al.,
2014
, “
The Molten Salt Reactor (MSR) in Generation IV: Overview and Perspectives
,”
Prog. Nucl. Energy
,
77
, pp.
308
319
.10.1016/j.pnucene.2014.02.014
4.
Hackett
,
M.
,
Kruizenga
,
A.
,
Hanson
,
M.
,
Sham
,
S.
, and
Young
,
G.
,
2018
, “
Technology Development in Fuels and Materials for the Fluoride-Salt Cooled High Temperature Reactor
,”
Trans. Am. Nucl. Soc.
,
118
(
1
), pp.
1358
1361
.https://www.ans.org/pubs/transactions/article-43918/
5.
American Society of Mechanical Engineers,
2019
, “Section III, Division 5. ASME Boiler and Pressure Vessel Code,” ASME, New York, Standard.
6.
American Society of Mechanical Engineers
,
2019
, “ASME Boiler and Pressure Vessel Code,” ASME, New York, Standard No. Code Case N-898.
7.
Segala
,
J. P.
,
Williams
,
J. F.
, and
Magruder
,
L.
,
2018
,
Design Overview of the Kairos Power Fluoride Salt-Cooled, High Temperature Reactor
,
Kairos Power LLC
,
Alameda, CA
, Report No. KP-TR-001.
8.
Kondo
,
M.
,
Nagasaka
,
T.
,
Xu
,
Q.
,
Muroga
,
T.
,
Sagara
,
A.
,
Noda
,
N.
,
Ninomiya
,
D.
,
Nagura
,
M.
,
Suzuki
,
A.
,
Terai
,
T.
, and
Fujii
,
N.
,
2009
, “
Corrosion Characteristics of Reduced Activation Ferritic Steel, JLF-1 (8.92 Cr–2W) in Molten Salts Flibe and Flinak
,”
Fusion Eng. Des.
,
84
(
7–11
), pp.
1081
1085
.10.1016/j.fusengdes.2009.02.046
9.
Holcomb
,
D. E.
,
Flanagan
,
G. F.
,
Mays
,
G. T.
,
Pointer
,
W. D.
,
Robb
,
K. R.
, and
Yoder
,
G. L.
, Jr.
,
2013
,
Fluoride Salt-Cooled High-Temperature Reactor Technology Development and Demonstration Roadmap
,
Oak Ridge National Laboratory
,
Oak Ridge, TN
, Report No. ORNL/TM-2013/401.
10.
Young
,
G. A.
, and
Sham
,
T.-L.
,
2018
,
Initial Assessment of Metallurgical Interaction of Clad/Base Metal Systems
,
Argonne National Laboratory
,
Argonne, IL
, Report No. ANL-ART-139 (OSTI ID: 1506992).
11.
Singh
,
P. M.
,
Chan
,
K. J.
,
Deo
,
C. S.
,
Deodeshmukh
,
V.
,
Keiser
,
J. R.
,
Ren
,
W.
,
Sham
,
T. L.
,
Wilson
,
D. F.
,
Yoder
,
G.
, and
Zhang
,
J.
,
2019
, “
Phenomena Identification and Ranking Table (PIRT) Study for Metallic Structural Materials for Advanced High-Temperature Reactor
,”
Ann. Nucl. Energy
,
123
, pp.
222
229
.10.1016/j.anucene.2018.08.036
12.
Messner
,
M. C.
,
Phan
,
V.-T.
,
Jetter
,
R. I.
, and
Sham
,
T.-L.
,
2018
, “
The Mechanical Interaction of Clad and Base Metal for Molten Salt Reactor Structural Components
,”
ASME
Paper No. PVP2018-84101.10.1115/PVP2018-84101
13.
Messner
,
M. C.
,
Phan
,
V.-T.
,
Barua
,
B.
,
Sham
,
T.-L.
, and
Jetter
,
R. I.
,
2018
,
Finite Element Analysis of Compliant Cladding and Base Metal Systems
,
Argonne National Laboratory
,
Argonne, IL
, Report No. ANL-ART-134 (OSTI ID: 1480529).
14.
Barua
,
B.
,
Phan
,
V.-T.
,
Messner
,
M. C.
,
Jetter
,
B.
,
Sham
,
T.-L.
, and
Wang
,
Y.
,
2019
, “
Design Methodologies for High Temperature Reactor Structural Components Cladded With Noncompliant Materials
,”
ASME
Paper No. PVP2019-93643.10.1115/PVP2019-93643
15.
Barua
,
B.
,
Messner
,
M. C.
,
Jetter
,
R. I.
, and
Sham
,
T.-L.
,
2020
, “
Development of Design Method for High Temperature Nuclear Reactor Cladded Components
,”
ASME
Paper No. PVP2020-21469.10.1115/PVP2020-21469
16.
Barua
,
B.
,
Messner
,
M. C.
,
Jetter
,
R. I.
, and
Sham
,
T.-L.
,
2020
, “
Selection Criteria for Clad Materials to Use With a 316H Base Material for High Temperature Nuclear Reactor Cladded Components
,”
ASME
Paper No. PVP2020-21493.10.1115/PVP2020-21493
17.
Barua
,
B.
,
Messner
,
M. C.
,
Rovinelli
,
A.
, and
Sham
,
T.-L.
,
2020
, “
Acceptance Criteria for the Mechanical Integrity of Clad/Base Metal Interface for High Temperature Nuclear Reactor Cladded Components
,”
ASME
Paper No. PVP2020-21494.10.1115/PVP2020-21494
18.
Barua
,
B.
,
Jetter
,
R. I.
,
Messner
,
M. C.
, and
Sham
,
T.-L.
,
2021
, “
Simplified Criteria With Reduced Testing Effort for Selecting Clad Materials for High Temperature Reactor Structural Components
,”
ASME
Paper No. PVP2021-61858.10.1115/PVP2021-61858
19.
Barua
,
B.
,
Messner
,
M. C.
,
Sham
,
T.-L.
,
Wang
,
Y.
,
Huang
,
S.
, and
Young
,
G. A.
,
2021
,
Design Rules for 316H Nuclear Components Cladded With Nickel or Tungsten
,
Argonne National Laboratory
,
Argonne, IL
, Report No. ANL-21/11.
20.
Haldar
,
B.
, and
Saha
,
P.
,
2018
, “
Identifying Defects and Problems in Laser Cladding and Suggestions of Some Remedies for the Same
,”
Mater. Today: Proc.
,
5
(
5
), pp.
13090
13101
.10.1016/j.matpr.2018.02.297
21.
American Society of Mechanical Engineers,
2019
, “ASME Boiler and Pressure Vessel Code,” ASME, New York, Standard No. Code Case N-861.
22.
American Society of Mechanical Engineers,
2019
, “ASME Boiler and Pressure Vessel Code,” ASME, New York, Standard No. Code Case N-862.
23.
Robertson
,
R. C.
,
Briggs
,
R. B.
,
Smith
,
O. L.
, and
Bettis
,
E. S.
,
1970
,
Two-Fluid Molten-Salt Breeder Reactor Design Study (Status as of January 1, 1968)
,
Oak Ridge National Laboratory
, Oak Ridge, TN, Report No. ORNL–4528.
24.
Ashby
,
M. F.
, and
Frost
,
H. J.
,
1982
,
Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics
,
Pergamon Press - Science
, Oxford, UK.
You do not currently have access to this content.