Abstract

Shrink-fit, wire-winding, and autofrettage processes and their combinations can be effectively used to increase the strength and fatigue life of metallic thick-walled cylinders for a given volume. While several numerical solutions have been developed for determining the residual stress profile through the thickness of thick-walled cylinders for different combinations of the shrink-fit and autofrettage processes, there are no analytical solutions available to predict the residual stress profile induced by the combination of the shrink-fit and inner and outer autofrettage processes with the hoop winding. In this study, the analytical formulations to predict the residual stress distribution for various combinations of the three processes (hoop-winding, shrink-fit, and autofrettage) have been formulated considering the same manufacturing sequences. The results demonstrate that combinations that include the wire-winding process significantly improve the residual stress profile through the wall thickness of single- or two-layer thick-walled cylinders. Specifically, when the wire-winding process is included, the residual stress at the inner surface increases by 25% in single-layer configurations and by 12% in two-layer thick-walled cylinders, respectively, compared to configurations without the wire-winding process.

References

1.
Partovi
,
A.
, and
Shamili
,
S. S.
,
2012
, “
Analysis of Autofrettaged High Pressure Components
,” Master thesis,
Blekinge Institute of Technology
,
Kalskrona, Sweden
.
2.
Song
,
Y. H.
,
Yan
,
Y. N.
, and
Zhang
,
R. J.
,
2004
, “
Finite Element Analysis of the Prestress Wire-Winding Press
,”
Mater. Process Technol.
,
151
(
1–3
), pp.
255
257
.10.1016/j.jmatprotec.2004.04.070
3.
Gamer
,
U.
,
1987
, “
The Shrink Fit With Nonlinearly Hardening Elastic-Plastic Hub
,”
ASME J. Appl. Mech.
,
54
(
2
), pp.
474
476
.10.1115/1.3173048
4.
Shufen
,
R.
, and
Dixit
,
U. S.
,
2018
, “
A Review of Theoretical and Experimental Research on Various Autofrettage Processes
,”
ASME J. Press. Vessel Technol.
,
140
(
5
), p.
050802
.10.1115/1.4039206
5.
Parker
,
A. P.
,
2001
, “
Autofrettage of Open-End Tubes—Pressures, Stresses, Strains, and Code Comparisons
,”
ASME J. Pressure Vessel Technol.
,
123
(
3
), pp.
271
281
.10.1115/1.1359209
6.
Huang
,
X. P.
, and
Cui
,
W. C.
,
2006
, “
Effect of Bauschinger Effect and Yield Criterion on Residual Stress Distribution of Autofrettaged Tube
,”
ASME J. Pressure Vessel Technol.
,
128
(
2
), pp.
212
216
.10.1115/1.2172621
7.
Farrahi
,
G. H.
,
Faghidian
,
S. A.
, and
Smith
,
D. J.
,
2009
, “
Reconstruction of Residual Stresses in Autofrettaged Thick-Walled Tubes From Limited Measurements
,”
Int. J. Pressure Vessels Piping
,
86
(
11
), pp.
777
784
.10.1016/j.ijpvp.2009.03.010
8.
Hosseinian
,
E.
,
Farrahi
,
G. H.
, and
Movahhedy
,
M. R.
,
2009
, “
An Analytical Framework for the Solution of Autofrettaged Tubes Under Constant Axial Strain Condition
,”
ASME J. Pressure Vessel Technol.
,
131
(
6
), p. 061201.10.1115/1.3148082
9.
Li
,
J.
,
Zheng
,
D.
,
Zhang
,
Z.
,
Wang
,
F.
,
Wang
,
Y.
, and
Wang
,
X.
,
2022
, “
Simulation Analysis of Cylinder Winding Prestress Based on Ansys
,”
Proceedings of Journal of Physics: Conference Series
,
IOP Publishing
,
Wuhan, China
, Sept. 16–19, p.
12006
.https://iopscience.iop.org/article/10.1088/1742-6596/2185/1/012006/pdf
10.
Alegre
,
J. M.
,
Bravo
,
P.
,
Preciado
,
M.
, and
Solaguren-Beascoa
,
M.
,
2010
, “
Simulation Procedure of High-Pressure Vessels Using the Wire Winding Technique
,”
Eng. Fail. Anal.
,
17
(
1
), pp.
61
69
.10.1016/j.engfailanal.2008.11.004
11.
Sedighi
,
M.
, and
Jabbari
,
A. H.
,
2013
, “
Investigation of Residual Stresses in Thick-Walled Vessels With Combination of Autofrettage and Wire-Winding
,”
Int. J. Pressure Vessels Piping
,
111–112
, pp.
295
301
.10.1016/j.ijpvp.2013.09.003
12.
ASME Code
,
2004
, “
Section VIII, Division 3, Article KD-9
,” American Society of Mechanical Engineers, New York.
13.
Pedersen
,
P.
,
2006
, “
On Shrink Fit Analysis and Design
,”
Comput. Mech.
,
37
(
2
), pp.
121
130
.10.1007/s00466-005-0664-7
14.
Gamer
,
U.
, and
Lance
,
R. H.
,
1983
, “
Residual Stress in Shrink Fits
,”
Int. J. Mech. Sci.
,
25
(
7
), pp.
465
470
.10.1016/0020-7403(83)90039-5
15.
Güven
,
U.
,
1993
, “
Stress Distribution in Shrink Fit With Elastic-Plastic Hub Exhibiting Variable Thickness
,”
Int. J. Mech. Sci.
,
35
(
1
), pp.
39
46
.10.1016/0020-7403(93)90063-Z
16.
Hu
,
Z.
, and
Puttagunta
,
S.
,
2012
, “
Computer Modeling of Internal Pressure Autofrettage Process of a Thick-Walled Cylinder With the Bauschinger Effect
,”
Am. Trans. Eng. Appl. Sci.
,
1
(
2
), pp.
143
161
.http://TUENGR.COM/ATEAS/V01/143-161.pdf
17.
Hu
,
Z.
, and
Parker
,
A. P.
,
2019
, “
Swage Autofrettage Analysis–Current Status and Future Prospects
,”
Int. J. Pressure Vessels Piping
,
171
, pp.
233
241
.10.1016/j.ijpvp.2019.03.007
18.
Zhan
,
R.
, and
Zhao
,
G.
,
1999
, “
Elasto-Plastical Dynamic Analysis of Explosive Autofrettage
,”
J. Southwest Pet. Univ. (Sci. Technol. Ed.)
,
21
(
4
), p.
82
.
19.
Kamal
,
S. M.
, and
Dixit
,
U. S.
,
2015
, “
Feasibility Study of Thermal Autofrettage of Thick-Walled Cylinders
,”
ASME J. Press. Vessel Technol.
,
137
(
6
), p.
061207
.10.1115/1.4030025
20.
Zare
,
H. R.
, and
Darijani
,
H.
,
2016
, “
A Novel Autofrettage Method for Strengthening and Design of Thick-Walled Cylinders
,”
Mater Des.
,
105
, pp.
366
374
.10.1016/j.matdes.2016.05.062
21.
Parker
,
A. P.
,
2005
, “
Assessment and Extension of an Analytical Formulation for Prediction of Residual Stress in Autofrettaged Thick Cylinders
,”
ASME
Paper No. PVP2005-71368. 10.1115/PVP2005-71368
22.
Hojjati
,
M. H.
, and
Hassani
,
A.
,
2007
, “
Theoretical and Finite-Element Modeling of Autofrettage Process in Strain-Hardening Thick-Walled Cylinders
,”
Int. J. Pressure Vessels Piping
,
84
(
5
), pp.
310
319
.10.1016/j.ijpvp.2006.10.004
23.
Abdelsalam
,
O. R.
,
2012
, “Analysis and Optimization of Autofrettaged and Shrink-Fitted Compound Cylinders Under Thermo-Mechanical Loads,”
Doctoral dissertation
, Concordia University, Montreal, QC, Canada.https://www.semanticscholar.org/paper/Analysis-and-Optimization-of-Autofrettaged-and-Abdelsalam/6fc40466bec4f0c81a4ee78c5fe9eb1287692faa
24.
Jahed
,
H.
,
Farshi
,
B.
, and
Karimi
,
M.
,
2006
, “
Optimum Autofrettage and Shrink-Fit Combination in Multi-Layer Cylinders
,”
ASME J. Pressure Vessel Technol.
,
128
(
2
), pp.
196
200
.10.1115/1.2172957
25.
Parker
,
A. P.
, and
Underwood
,
J. H.
,
1998
, “
Influence of the Bauschinger Effect on Residual Stress and Fatigue Lifetimes in Autofrettaged Thick-Walled Cylinders
,”
Fatigue and Fracture Mechanics, ASTM STP 1321
,
Panontin
,
Tl
,
Sheppard
,
SD
, eds., vol.
29
,
ASTM
,
Philadelphia, PA
.https://www.researchgate.net/publication/235078428_Influence_of_the_Bauschinger_Effect_on_Residual_Stress_and_Fatigue_Lifetimes_in_Autofrettaged_Thick-Walled_Cylinders
26.
Ghorbanpour
,
A.
,
Loghman
,
A.
,
Khademizadeh
,
H.
, and
Moradi
,
M.
,
2003
, “
The Bauschinger and Hardening Effect on Residual Stresses in Thick-Walled Cylinders of SUS 304
,”
Trans. CSME
,
26
(
4
), pp.
361
372
.10.1139/tcsme-2002-0021
27.
Abdelsalam
,
O. R.
, and
Sedaghati
,
R.
,
2013
, “
Design Optimization of Compound Cylinders Subjected to Autofrettage and Shrink-Fitting Processes
,”
ASME J. Pressure Vessel Technol.
,
135
(
2
), p. 021209.10.1115/1.4007960
28.
Kapp
,
J. A.
,
Brown
,
B. B.
,
LaBombard
,
E. J.
, and
Lorenz
,
H. A.
,
1998
, “
On the Design of High Durability High Pressure Vessels
,” pp.
85
92
.
29.
Parker
,
A. P.
,
2001
, “
Bauschinger Effect Design Procedures for Compound Tubes Containing an Autofrettaged Layer
,”
ASME J. Pressure Vessel Technol.
,
123
(
2
), pp.
203
206
.10.1115/1.1331281
30.
Gexia
,
Y.
, and
Hongzhao
,
L.
,
2012
, “
An Analytical Solution of Residual Stresses for Shrink-Fit Two-Layer Cylinders After Autofrettage Based on Actual Material Behavior
,”
ASME J. Pressure Vessel Technol.
,
134
(
6
), p.
061209
.10.1115/1.4006121
31.
Kendall
,
D. P.
,
1970
,
The Effect of Material Removal on the Strength of Autofrettaged Cylinders
,
Benet R&E Laboratories, Watervliet Arsenal
,
New York
.
32.
Parker
,
A. P.
,
Underwood
,
J. H.
, and
Kendall
,
D. P.
,
1999
, “
Bauschinger Effect Design Procedures for Autofrettaged Tubes Including Material Removal and Sachs' Method
,”
ASME J. Pressure Vessel Technol.
,
121
(
4
), pp.
430
437
.10.1115/1.2883726
33.
Jahed
,
H.
, and
Ghanbari
,
G.
,
2003
, “
Actual Unloading Behavior and Its Significance on Residual Stress in Machined Autofrettaged Tubes
,”
ASME J. Pressure Vessel Technol.
,
125
(
3
), pp.
321
325
.10.1115/1.1593070
34.
Parker
,
A. P.
, “
Compound and Monobloc Cylinders Incorporating Reverse-Autofrettage to Reduce External Hoop Stresses
,”
ASME
Paper No. PVP2012-78298. 10.1115/PVP2012-78298
35.
Abdelsalam
,
O. R.
, and
Sedaghati
,
R.
, “
Outer Surface Prior to Inner Surface Double Autofrettage Technique for a Compound Cylinder
,”
ASME
Paper No. PVP2013-97035. 10.1115/PVP2013-97035
36.
Landau
,
L. D.
,
Lifšic
,
E. M.
,
Lifshitz
,
E. M.
,
Kosevich
,
A. M.
, and
Pitaevskii
,
L. P.
,
1986
,
Theory of Elasticity
,
Elsevier Butterworth-Heinemann
,
New York
.
37.
Hetnarski
,
R. B.
,
Eslami
,
M. R.
, and
Gladwell
,
G. M. L.
,
2009
,
Thermal Stresses: Advanced Theory and Applications
, Vol.
41
,
Springer
,
Berlin
.
38.
Chen
,
W.-F.
, and
Han
,
D.-J.
,
1988
,
Plasticity for Structural Engineers
,
Springer
,
New York
.
39.
Lazzarin
,
P.
, and
Livieri
,
P.
,
1997
, “
Different Solutions for Stress and Strain Fields in Autofrettaged Thick-Walled Cylinders
,”
Int. J. Pressure Vessels Piping
,
71
(
3
), pp.
231
238
.10.1016/S0308-0161(97)00002-1
40.
Lamé
,
G.
,
1866
,
Leçons Sur la Théorie Mathématique de L'élasticité Des Corps Solides
, 2nd ed.,
Gauthier-Villars
,
Bachelier, Paris
.
You do not currently have access to this content.