Abstract
Explosion containment vessels (ECVs) are important equipment used for underwater explosion experiment research. In this paper, a method is proposed to improve the blast resistance of the ECV by placing it in the water medium. The shock response caused by the underwater explosion in a spherical ECV is studied. The single-layer thin-walled spherical vessel shell submerged in an infinite domain water medium is deduced and simplified as a single-degree-of-freedom elastic vibration system with viscous damping. The underwater explosion shock wave is simplified to an exponential shock loading, and the analytical solutions of the radial shock vibration of the spherical shell are obtained using Duhamel's integrals. Compared with the numerical simulation results, the accuracy of the theoretical model is verified. The study results show that the water medium radiates out vibration energy and plays an important role in eliminating vibration through damping. It is found that the vibration damping ratio can be controlled by adjusting the vessel radius and thickness, so that the vibration of the shell can be controlled within three periods and the impact fatigue can be reduced. In addition, the radiation damping of the water medium greatly reduces the maximum radial displacement of the spherical shell, which significantly improves the blast resistance of the spherical shell.