Abstract

Explosion containment vessels (ECVs) are important equipment used for underwater explosion experiment research. In this paper, a method is proposed to improve the blast resistance of the ECV by placing it in the water medium. The shock response caused by the underwater explosion in a spherical ECV is studied. The single-layer thin-walled spherical vessel shell submerged in an infinite domain water medium is deduced and simplified as a single-degree-of-freedom elastic vibration system with viscous damping. The underwater explosion shock wave is simplified to an exponential shock loading, and the analytical solutions of the radial shock vibration of the spherical shell are obtained using Duhamel's integrals. Compared with the numerical simulation results, the accuracy of the theoretical model is verified. The study results show that the water medium radiates out vibration energy and plays an important role in eliminating vibration through damping. It is found that the vibration damping ratio can be controlled by adjusting the vessel radius and thickness, so that the vibration of the shell can be controlled within three periods and the impact fatigue can be reduced. In addition, the radiation damping of the water medium greatly reduces the maximum radial displacement of the spherical shell, which significantly improves the blast resistance of the spherical shell.

References

1.
Zhu
,
W.
,
Wei
,
J.
,
Niu
,
L.
,
Li
,
S.
, and
Li
,
S.
,
2018
, “
Numerical Simulation on Damage and Failure Mechanism of Rock Under Combined Multiple Strain Rates
,”
Shock Vib.
,
2018
, pp.
1
20
.10.1155/2018/4534250
2.
Liang
,
H.
,
Luo
,
N.
,
Shen
,
T.
,
Sun
,
X.
,
Fan
,
X.
, and
Cao
,
Y.
,
2020
, “
Experimental and Numerical Simulation Study of Zr-Based BMG/Al Composites Manufactured by Underwater Explosive Welding
,”
J. Mater. Res. Technol.
,
9
(
2
), pp.
1539
1548
.10.1016/j.jmrt.2019.11.079
3.
Nagesh
, and
Gupta
,
N. K.
,
2021
, “
Response of Thin Walled Metallic Structures to Underwater Explosion: A Review
,”
Int. J. Impact Eng.
,
156
, p.
103950
.10.1016/j.ijimpeng.2021.103950
4.
Liang
,
H.
,
Zhang
,
Q.
,
Long
,
R.
, and
Ren
,
S.
,
2019
, “
Pulsation Behavior of a Bubble Generated by a Deep Underwater Explosion
,”
AIP Adv.
,
9
(
2
), p.
25108
.10.1063/1.5086361
5.
Li
,
L.
,
Zhong
,
D.
, and
Mao
,
X.
,
2018
, “
Research on Dynamic Response of Explosion Containment Vessels
,”
J. Intell. Fuzzy Syst.
,
34
(
2
), pp.
1225
1234
.10.3233/JIFS-169419
6.
Liu
,
X.
,
Gu
,
W. B.
,
Liu
,
J. Q.
,
Xu
,
J. L.
,
Hu
,
Y. H.
, and
Hang
,
Y. M.
,
2020
, “
Dynamic Response of Cylindrical Explosion Containment Vessels Subjected to Internal Blast Loading
,”
Int. J. Impact Eng.
,
135
, p.
103389
.10.1016/j.ijimpeng.2019.103389
7.
Yaguang
,
S.
,
Dezhi
,
Z.
,
Shiying
,
T.
,
Jie
,
L.
, and
Qizhao
,
L.
,
2015
, “
Theoretical Analysis of a Reactive Reinforcement Method for Cylindrical Explosion-Containment Vessels
,”
ASME J. Pressure Vessel Technol.
,
137
(
1
), p.
011206
.10.1115/1.4027450
8.
Cheng
,
S.
,
Shi
,
Y.
,
Yin
,
W.
,
Liu
,
W.
,
Tang
,
S.
, and
Zhang
,
D.
,
2020
, “
Influence of Aluminum Foam Lining on Deformation of Steel Cylinders Subjected to Internal Blast Loading
,”
Explos. Shock Waves
,
40
(
7
), pp.
56
63
.10.11883/bzycj-2019-0339
9.
Xu
,
H.
,
Chen
,
L.
,
Zhang
,
D.
,
Zhang
,
F.
,
Shen
,
Z.
,
Liu
,
W.
, and
Huang
,
S.
,
2021
, “
Mitigation Effects on the Reflected Overpressure of Blast Shock With Water Surrounding an Explosive in a Confined Space
,”
Def. Technol.
,
17
(
3
), pp.
1071
1080
.10.1016/j.dt.2020.06.026
10.
Wang
,
Q.
,
Gong
,
J.
,
Li
,
Z.
,
Liu
,
S.
,
Shu
,
C.
,
Cheng
,
Y.
, and
Li
,
X.
,
2018
, “
Vibration Characteristics Analysis of Composite Double-Layer Explosive Vessel Shell Subjected to Explosion Loading
,”
Shock Vib.
,
2018
, pp.
1
10
.10.1155/2018/3714798
11.
Zheng
,
J. Y.
,
Chen
,
Y. J.
,
Deng
,
G. D.
,
Sun
,
G. Y.
,
Hu
,
Y. L.
, and
Li
,
Q. M.
,
2006
, “
Dynamic Elastic Response of an Infinite Discrete Multi-Layered Cylindrical Shell Subjected to Uniformly Distributed Pressure Pulse
,”
Int. J. Impact Eng.
,
32
(
11
), pp.
1800
1827
.10.1016/j.ijimpeng.2005.05.011
12.
Sun
,
Q.
,
Dong
,
Q.
, and
Yang
,
S.
,
2019
, “
An Analytical Method to Predict Dynamic Response of Cylindrical Composite Shells Subjected to Internal Blast Loading
,”
ASME J. Pressure Vessel Technol.
,
141
(
6
), p.
061203
.10.1115/1.4044343
13.
Dong
,
Q.
, and
Hu
,
B.
,
2016
, “
Dynamic Behavior of Carbon Fiber Explosion Containment Vessels
,”
ASME J. Pressure Vessel Technol.
,
138
(
1
), p.
011202
.10.1115/1.4030435
14.
Sidorenko
,
Y.
, and
Shlenskii
,
P.
,
2013
, “
On the Assessment of Stress–Strain State of the Load-Bearing Structural Elements in the Tubular Explosion Chamber
,”
Strength Mater.+
,
45
(
2
), pp.
210
220
.10.1007/s11223-013-9450-5
15.
Cui
,
Y.
,
Wang
,
W.
,
Hao
,
H.
,
Xiong
,
Y.
, and
Chen
,
P.
,
2016
, “
Research on Deformation and Failure Law of Concrete Reinforced Steel Cylinder Under Internal Blast Loading
,”
Acta Armamentarii
,
37
(
S2
), pp.
75
80 (in Chinese
).
16.
Hao
,
Y.
,
Zhou
,
Z.
, and
Zhang
,
X.
,
2015
, “
The Pressure Characteristics of High Pressure Spherical Closed Container Under Underwater Explosion
,”
Acta Armamentarii
,
36
(
S1
), pp.
108
114 (in Chinese
).
17.
Baker
,
W. E.
,
Hu
,
W. C. L.
, and
Jackson
,
T. R.
,
1966
, “
Elastic Response of Thin Spherical Shells to Axisymmetric Blast Loading
,”
ASME J. Appl. Mech.
,
33
(
4
), pp.
800
806
.10.1115/1.3625185
18.
GAD
,
2000
, “
General Specifications for Naval Ships
,” General Armament Department, Beijing, China, Standard No. GJB 4000-2000 (in Chinese).
19.
Henrych
,
J.
,
1979
,
The Dynamics of Explosion and Its Use
,
Elsevier Scientific Publishing Company
, Amsterdam, The Netherlands.
20.
Weaver
,
W.
, Jr.
,
Timoshenko
,
S. P.
, and
Young
,
D. H.
,
1991
,
Vibration Problems in Engineering
,
Wiley
,
New York
.
21.
LSTC
,
2007
,
LS-DYNA Version 971 Keyword User's Manual
,
Livermore Software Technology Corporation
,
Livermore, CA
.
22.
Chen
,
Z.
,
Wang
,
H.
,
Sang
,
Z.
,
Wang
,
W.
,
Yang
,
H.
,
Meng
,
W.
, and
Li
,
Y.
,
2021
, “
Theoretical and Numerical Analysis of Blasting Pressure of Cylindrical Shells Under Internal Explosive Loading
,”
J. Mar. Sci. Eng.
,
9
(
11
), p.
1297
.10.3390/jmse9111297
23.
Buzukov
,
A. A.
,
1977
, “
Characteristics of the Behavior of the Walls of Explosion Chambers Under the Action of Pulsed Loading
,”
Combust., Explos. Shock Waves
,
12
(
4
), pp.
549
554
.10.1007/BF00741150
24.
Dong
,
Q.
,
Li
,
Q. M.
, and
Zheng
,
J. Y.
,
2010
, “
Further Study on Strain Growth in Spherical Containment Vessels Subjected to Internal Blast Loading
,”
Int. J. Impact Eng.
,
37
(
2
), pp.
196
206
.10.1016/j.ijimpeng.2009.09.001
25.
Duffey
,
T. A.
, and
Romero
,
C.
,
2003
, “
Strain Growth in Spherical Explosive Chambers Subjected to Internal Blast Loading
,”
Int. J. Impact Eng.
,
28
(
9
), pp.
967
983
.10.1016/S0734-743X(02)00169-0
You do not currently have access to this content.