Graphical Abstract Figure

Schematic diagram of the sealing section.

Graphical Abstract Figure

Schematic diagram of the sealing section.

Close modal

Abstract

Bolted flanged connections are widely used in the petroleum and chemical industries. The gasket is the core component of bolted flanged connections. Accurate prediction of the gasket life is of great significance for the efficient, continuous, safe, and long-term operation of the device. The gasket accelerated life prediction method is a method for predicting gasket life developed in recent years. However, the accuracy of gasket life predicted by this method has not been studied so far. In order to verify the accuracy of the gasket accelerated life prediction method, a verification model for the accuracy of gasket life prediction was proposed in this study. The maximum accelerated stress level of gasket was determined through tests, and the accelerated life test and long-term sealing performance test were carried out. The hypothesis check of the gasket life distribution, consistency check of the shape parameters, and model parameter estimation of the accelerated life equation were carried out based on the measured data. All parameters of the life verification model (LVM) were obtained. On this basis, the life estimation values of the gasket accelerated life prediction model (ALPM) and the life verification model were compared under multiple groups of normal stress levels. The results show that the error time between the prediction model and the verification model does not exceed 720 h, which verifies the accuracy of the gasket accelerated life prediction method.

References

1.
Zhan
,
Y. Y.
,
Lan
,
M.
,
Zhu
,
X. L.
, and
Lu
,
X. F.
,
2022
, “
Research on Prediction Models for the Compression-Resilience Performance of Corrugated Metal Gaskets With Residual Stress
,”
ASME J. Pressure Vessel Technol.
,
144
(
5
), p.
051701
.10.1115/1.4053602
2.
Jolly
,
P.
, and
Marchand
,
L.
,
2009
, “
Leakage Predictions for Static Gasket Based on the Porous Media Theory
,”
ASME J. Pressure Vessel Technol.
,
131
(
2
), p.
021203
.10.1115/1.3008031
3.
Okorn
,
I.
,
Nagode
,
M.
,
Klemenc
,
J.
, and
Oman
,
S.
,
2021
, “
Analysis of Additional Load and Fatigue Life of Preloaded Bolts in a Flange Joint Considering a Bolt Bending Load
,”
Metals
,
11
(
3
), p.
449
.10.3390/met11030449
4.
Bouzid
,
A. H.
, and
Aweimer
,
A. S. O.
,
2019
, “
On the Use of Gas Flow Models to Predict Leak Rates Through Sheet Gasket Materials
,”
ASME J. Pressure Vessel Technol.
,
141
(
5
), p.
051204
.10.1115/1.4044115
5.
Zhu
,
L. B.
,
Bouzid
,
A. H.
, and
Hong
,
J.
,
2017
, “
Numerical and Experimental Study of Elastic Interaction in Bolted Flange Joints
,”
ASME J. Pressure Vessel Technol.
,
139
(
2
), p.
021211
.10.1115/1.4035316
6.
Nitta
,
I.
, and
Matsuzaki
,
Y.
,
2010
, “
Experimental Study of the Performance of Static Seals Based on Measurements of Real Contact Area Using Thin Polycarbonate Films
,”
ASME J. Tribol.
,
132
(
2
), p.
022202
.10.1115/1.4000838
7.
Shao
,
Y. P.
,
Yin
,
Y. X.
,
Du
,
S. C.
, and
Xi
,
L. F.
,
2019
, “
A Surface Connectivity-Based Approach for Leakage Channel Prediction in Static Sealing Interface
,”
ASME J. Tribol.
,
141
(
6
), p.
062201
.10.1115/1.4043123
8.
Zhang
,
F. K.
,
Liu
,
J. H.
,
Ding
,
X. Y.
, and
Yang
,
Z. M.
,
2017
, “
An Approach to Calculate Leak Channels and Leak Rates Between Metallic Sealing Surfaces
,”
ASME J. Tribol.
,
139
(
1
), p.
011708
.10.1115/1.4033887
9.
Flitney
,
R. K.
,
2011
, Seals and Sealing Handbook,
Elsevier
,
Oxford, UK
.
10.
Marie
,
C.
, and
Lasseux
,
D.
,
2007
, “
Experimental Leak-Rate Measurement Through a Static Metal Seal
,”
ASME J. Fluids Eng.
,
129
(
6
), pp.
799
805
.10.1115/1.2734250
11.
Warren
,
W. E.
,
Curro
,
J. G.
, and
Amos
,
D. E.
,
1988
, “
On the Nature of O-Rings in Contact With Rough Surfaces
,”
ASME J. Tribol.
,
110
(
4
), pp.
632
637
.10.1115/1.3261705
12.
Zhang
,
B.
,
Zhou
,
J. F.
,
Yu
,
X. M.
,
Hu
,
N. B.
,
Chen
,
C. H.
, and
Kong
,
C. Y.
,
2020
, “
Seal Performance of Non-Asbestos Rubber Gasket Under Multi-Factor Conditions
,”
Lubr. Sealing
,
45
(
9
), pp.
127
130
.10.3969/j.issn.0254-0150.2020.09.020
13.
Liu
,
Y.
,
Chen
,
X. D.
,
Fan
,
Z. C.
,
Wang
,
L.
, and
Xue
,
J. L.
,
2020
, “
Experimental Research on the Gasket Parameters of Flange Sealing Structure Based on Leakage Rate
,”
J. Mech. Eng.
,
56
(
21
), pp.
168
176
.10.3901/JME.2020.21.168
14.
Li
,
G.
,
Gong
,
J. M.
,
Tan
,
J. Z.
,
Zhu
,
D. S.
, and
Jia
,
W. H.
,
2019
, “
Stress Relaxation Behavior and Life Prediction of Gasket Materials Used in Proton Exchange Membrane Fuel Cells
,”
J. Cent. South Univ.
,
26
(
3
), pp.
623
631
.10.1007/s11771-019-4033-7
15.
Aloui
,
S.
, and
Deckmann
,
H.
,
2019
, “
Static Seals Provide Information About Their Own Wear
,”
KGK-Kautsch. Gummi Kunstst.
,
72
(
4
), pp.
14
19
.https://www.researchgate.net/publication/336589727_Monitoring_the_damage_development_by_dynamic-mechanical_and_dielectric_analyzer
16.
Lu
,
X. F.
, and
Gu
,
B. Q.
,
2002
, “
Life Expectation Method of Flanged Connections Based on Creep Analysis at Elevated Temperature
,”
J. Nanjing Tech University,
4
, pp.
14
17
.10.3969/j.issn.1671-7627.2002.04.003
17.
Grine
,
L.
, and
Bouzid
,
A. H.
,
2013
, “
Prediction of Leak Rates Through Porous Gaskets at High Temperature
,”
ASME J. Pressure Vessel Technol.
,
135
(
2
), p.
021302
.10.1115/1.4023425
18.
Bartonicek
,
J.
,
Schaaf
,
M.
, and
Schoeckle
,
F.
,
2002
, “
On the Effect of Temperature on Tightening Characteristics of Gaskets
,”
ASME
Paper No. PVP2002-1080.10.1115/PVP2002-1080
19.
Sun
,
Z. G.
,
2011
, “
Research on Life Evaluation Technology and Reliability Maintenance Strategy of Bolt Flange Connection System
,” Ph.D. dissertation,
Nanjing Tech University
,
Nanjing, JS, China
.
20.
Sun
,
Z. G.
, and
Gu
,
B. Q.
,
2011
, “
Life Assessment of Non-Metallic Gasket Bolted Flanged Connections
,”
J. Lubr. Eng.
,
36
(
3
), pp.
37
40
.10.3969/j.issn.0254-0150.2011.03.010
21.
Zanzi
,
M. S.
,
Souza
,
E. L.
,
Dutra
,
G. B.
,
Paiva
,
K. V.
,
Oliveira
,
J. L. G.
,
Cunha
,
T. V.
, and
Monteiro
,
A. S.
,
2022
, “
Service Lifetime Prediction of Nitrile Butadiene Rubber Gaskets Used in Plate Heat Exchangers
,”
J. Appl. Polym. Sci.
,
139
(
28
), p.
e52523
.10.1002/app.52523
22.
Lee
,
P.-C.
,
Kim
,
S. Y.
,
Jeoung
,
S. K.
,
Wei
,
S.-H.
,
Ko
,
Y. K.
,
Ha
,
J. U.
,
Lee
,
J.-Y.
, and
Kim
,
M.
,
2021
, “
Lifetime Prediction of Fluoroelastomer Using Accelerated Aging Test
,”
Polymer-Korea
,
45
(
6
), pp.
910
914
.10.7317/pk.2021.45.6.910
23.
Veiga
,
J. C.
,
Cipolatti
,
C. F.
, and
Furtado
,
A. M.
,
2009
, “
Superheated Steam Test Rig for Compressed Non-Asbestos Gaskets Evaluation
,”
ASME
Paper No. PVP2009-77466.10.1115/PVP2009-77466
24.
Tsuji
,
H.
,
Honda
,
T.
,
Yamaguchi
,
A.
,
Kobayashi
,
T.
, and
Sawa
,
T.
,
2009
, “
Evaluation of Sealing Behavior of Gaskets at Elevated Temperature Based on the Test Method HPIS Z105 Proposed in Japan
,”
ASME
Paper No. PVP2009-77846.10.1115/PVP2009-77846
25.
Wang
,
L.
,
Fan
,
Z. C.
,
Tao
,
J. H.
, and
Ma
,
S. H.
,
2023
, “
High Temperature Performance Comparison of Spiral-Wound and Kammprofile Gaskets
,”
ASME
Paper No. PVP2023-106140.10.1115/PVP2023-106140
26.
Lejeune
,
H.
,
Javanaud
,
S.
, and
Richard
,
K.
,
2018
, “
Flange Gasket Behavior Characterization for Service in Arctic Environment
,”
ASME
Paper No. PVP2018-84284.10.1115/PVP2018-84284
27.
Celzard
,
A.
,
Mareche
,
J. F.
, and
Furdin
,
G.
,
2003
, “
Describing the Properties of Compressed Expanded Graphite Through Power Laws
,”
J. Phys.-Condens. Matter
,
15
(
43
), pp.
7213
7226
.10.1088/0953-8984/15/43/006
28.
Bouzid
,
A. H.
, and
Das
,
S. K.
,
2023
, “
Long-Term Performance of Semimetallic Gaskets
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
9
(
3
), p.
031801
.10.1115/1.4056260
29.
Solfiti
,
E.
, and
Berto
,
F.
,
2020
, “
A Review on Thermophysical Properties of Flexible Graphite
,”
Procedia Struct. Integr.
,
26
, pp.
187
198
.10.1016/j.prostr.2020.06.022
30.
Zhou
,
X.
,
Contescu
,
C. I.
,
Zhao
,
X.
,
Lu
,
Z.
,
Zhang
,
J.
,
Katoh
,
Y.
,
Wang
,
Y.
,
Liu
,
B.
,
Tang
,
Y.
, and
Tang
,
C.
,
2017
, “
Oxidation Behavior of Matrix Graphite and Its Effect on Compressive Strength
,”
Sci. Technol. Nucl. Install.
,
2017
, pp.
1
6
.10.1155/2017/4275375
31.
Mao
,
S. S.
,
Tang
,
Y. C.
, and
Wang
,
L. L.
,
2008
, Reliability Statistics,
Higher Education Press
,
Beijing, China
.
32.
Li
,
Y. Y.
, and
Gu
,
B. Q.
,
2009
, “
Life Prediction Model of Non-Metal Gasket Seal
,”
Lubr. Sealing
,
34
(
6
), pp.
52
54
.10.3969/j.issn.0254-0150.2009.06.014
33.
China Institute of Electronic Technology Standardization
,
1987
, Reliability Test Table (Subscription Book),
National Defense Industry Press
,
Beijing, China
.
34.
Salah Omar Aweimer
,
A.
, and
Bouzid
,
A. H.
,
2018
, “
Experimental Investigation of Interfacial and Permeation Leak Rates in Sheet Gaskets and Valve Stem Packing
,”
ASME
Paper No. PVP2018-85112.10.1115/PVP2018-85112
35.
Persson
,
B. N. J.
, and
Yang
,
C.
,
2008
, “
Theory of the Leak-Rate of Seals
,”
J. Phys.-Condens. Matter
,
20
(
31
), p.
315011
.10.1088/0953-8984/20/31/315011
36.
Mao
,
S. S.
, and
Wang
,
L. L.
,
2000
,
Accelerated Life-Span Test
,
Science Press
,
Beijing, China
.
You do not currently have access to this content.