Graphical Abstract Figure

The mechanical heterogeneity of the X80 pipeline steel welded joint affects the crack propagation paths and the evolution of the mechanical field at the tip of the crack.

Graphical Abstract Figure

The mechanical heterogeneity of the X80 pipeline steel welded joint affects the crack propagation paths and the evolution of the mechanical field at the tip of the crack.

Close modal

Abstract

During the service life of oil and gas pipelines, welded joints are critical areas that are susceptible to failure or fracture. This study aims to investigate the influence of mechanical heterogeneity on the mechanical fields at the crack tip and the crack propagation paths in X80 pipeline steel welded joints. First, the microstructure of the welded joint was analyzed, and the distribution of mechanical properties in specific local areas was determined through hardness tests. Subsequently, the mechanical properties of the dissimilar materials within the welded joint were characterized using the “field” subroutine, and the influence of mechanical heterogeneity on the mechanical fields at the crack tip was examined. Additionally, the crack propagation paths at various locations of X80 pipeline steel welded joints, influenced by mechanical heterogeneity, were analyzed from a mechanical perspective. Finally, based on the identified crack propagation paths, the variation of mechanical fields at the crack tip during the propagation process was captured using debonding techniques. The results reveal significant differences in the microstructure across different regions, affecting the distribution of mechanical properties. Mechanical heterogeneity influences the distribution of mechanical fields at the crack tip, thereby affecting the trajectory of crack propagation. Stress corrosion cracking (SCC) tends to propagate toward regions with higher yield strength, as increased yield strength facilitates crack propagation. Crack propagation redistributes the stress–strain field at the crack tip, resulting in an unloading process that relieves stress at the crack tip. Consequently, the stress–strain at the tip of the propagating crack is lower than that at the stationary crack tip.

References

1.
Wu
,
W.
,
Li
,
Y.
,
Cheng
,
G.
,
Zhang
,
H.
, and
Kang
,
J.
,
2019
, “
Dynamic Safety Assessment of Oil and Gas Pipeline Containing Internal Corrosion Defect Using Probability Theory and Possibility Theory
,”
Eng. Failure Anal.
,
98
, pp.
156
166
.10.1016/j.engfailanal.2019.01.080
2.
Benjamin
,
A. C.
,
Freire
,
J. L. F.
,
Vieira
,
R. D.
, and
Cunha
,
D. J. S.
,
2016
, “
Interaction of Corrosion Defects in Pipelines—Part 1: Fundamentals
,”
Int. J. Pressure Vessels Piping
,
144
, pp.
56
62
.10.1016/j.ijpvp.2016.05.007
3.
Chen
,
Y. F.
,
Zhang
,
H.
,
Zhang
,
J.
,
Liu
,
X. B.
,
Li
,
X.
, and
Zhou
,
J.
,
2015
, “
Failure Assessment of X80 Pipeline With Interacting Corrosion Defects
,”
Eng. Failure Anal.
,
47
, pp.
67
76
.10.1016/j.engfailanal.2014.09.013
4.
Caleyo
,
F.
,
Gonzalez
,
J. L.
, and
Hallen
,
J. M.
,
2002
, “
A Study on the Reliability Assessment Methodology for Pipelines With Active Corrosion Defects
,”
Int. J. Pressure Vessels Piping
,
79
(
1
), pp.
77
86
.10.1016/S0308-0161(01)00124-7
5.
Shirinzadeh-Dastgiri
,
M.
,
Mohammadi
,
J.
,
Behnamian
,
Y.
,
Eghlimi
,
A.
, and
Mostafaei
,
A.
,
2015
, “
Metallurgical Investigations and Corrosion Behavior of Failed Weld Joint in AISI 1518 Low Carbon Steel Pipeline
,”
Eng. Failure Anal.
,
53
, pp.
78
96
.10.1016/j.engfailanal.2015.03.015
6.
Hou
,
J.
,
Shoji
,
T.
,
Lu
,
Z. P.
,
Peng
,
Q. J.
,
Wang
,
J. Q.
,
Han
,
E. H.
, and
Ke
,
W.
,
2010
, “
Residual Strain Measurement and Grain Boundary Characterization in the Heat-Affected Zone of a Weld Joint Between Alloy 690TT and Alloy 52
,”
J. Nucl. Mater.
,
397
(
1–3
), pp.
109
115
.10.1016/j.jnucmat.2009.12.016
7.
Zhu
,
R. L.
,
Wang
,
J. Q.
,
Zhang
,
Z. M.
, and
Han
,
E. H.
,
2017
, “
Stress Corrosion Cracking of Fusion Boundary for 316 L/52M Dissimilar Metal Weld Joints in Borated and Lithiated High Temperature Water
,”
Corros. Sci.
,
120
, pp.
219
230
.10.1016/j.corsci.2017.01.024
8.
Ayrault
,
D.
,
Bonaventure
,
A.
,
Asserin
,
O.
,
Montay
,
G.
, and
Klosek
,
V.
,
2011
, “
Numerical and Experimental Evaluation of Residual Stresses in Dissimilar Weld Joints
,”
ASME
Paper No. PVP2011-57523.10.1115/PVP2011-57523
9.
Wu
,
K.
,
Liu
,
X. B.
,
Zhang
,
H.
,
Sui
,
Y. L.
,
Zhang
,
Z. Y.
,
Yang
,
D.
, and
Liu
,
Y. Q.
,
2020
, “
Fracture Response of 1422-mm Diameter Pipe With Double-V Groove Weld Joints and Circumferential Crack in Fusion Line
,”
Eng. Failure Anal.
,
115
, p.
104641
.10.1016/j.engfailanal.2020.104641
10.
Zhou
,
C. S.
,
Huang
,
Q. Y.
,
Guo
,
Q.
,
Zheng
,
J. Y.
,
Chen
,
X. Y.
,
Zhu
,
J.
, and
Zhang
,
L.
,
2016
, “
Sulphide Stress Cracking Behaviour of the Dissimilar Metal Welded Joint of X60 Pipeline Steel and Inconel 625 Alloy
,”
Corros. Sci.
,
110
, pp.
242
252
.10.1016/j.corsci.2016.04.044
11.
Xue
,
H.
,
Wang
,
Z.
,
Wang
,
S.
,
He
,
J. X.
, and
Yang
,
H. L.
,
2021
, “
Characterization of Mechanical Heterogeneity in Dissimilar Metal Welded Joints
,”
Materials
,
14
(
15
), p.
4145
.10.3390/ma14154145
12.
Wang
,
Z.
,
Xue
,
H.
,
Wang
,
S.
, and
Zhang
,
Y. B.
,
2023
, “
A Multi-Method Coupled Approach to Simulate Crack Growth Path and Stress-Strain Field at the Tip of the Growing Crack in the Dissimilar Metal Welded Joint
,”
Int. J. Pressure Vessels Piping
,
206
, p.
105046
.10.1016/j.ijpvp.2023.105046
13.
Xue
,
H.
,
Li
,
Z. J.
,
Lu
,
P. Z.
, and
Shoji
,
T.
,
2011
, “
The Effect of a Single Tensile Overload on Stress Corrosion Cracking Growth of Stainless Steel in a Light Water Reactor Environment
,”
Nucl. Eng. Des.
,
241
(
3
), pp.
731
738
.10.1016/j.nucengdes.2010.12.025
14.
Shoji
,
T.
,
Lu
,
Z.
, and
Murakami
,
H.
,
2010
, “
Formulating Stress Corrosion Cracking Growth Rates by Combination of Crack Tip Mechanics and Crack Tip Oxidation Kinetics
,”
Corros. Sci.
,
52
(
3
), pp.
769
779
.10.1016/j.corsci.2009.10.041
15.
Peng
,
Q. J.
,
Xue
,
H.
,
Hou
,
J.
,
Sakaguchi
,
K.
,
Takeda
,
Y.
,
Kuniya
,
J.
, and
Shoji
,
T.
,
2011
, “
Role of Water Chemistry and Microstructure in Stress Corrosion Cracking in the Fusion Boundary Region of an Alloy 182-A533B Low Alloy Steel Dissimilar Weld Joint in High Temperature Water
,”
Corros. Sci.
,
53
(
12
), pp.
4309
4317
.10.1016/j.corsci.2011.08.046
16.
Dong
,
L. J.
,
Peng
,
Q. J.
,
Han
,
E. H.
,
Ke
,
W.
, and
Wang
,
L.
,
2018
, “
Microstructure and Intergranular Stress Corrosion Cracking Susceptibility of a SA508-52M-316 L Dissimilar Metal Weld Joint in Primary Water
,”
J. Mater. Sci. Technol.
,
34
(
8
), pp.
1281
1292
.10.1016/j.jmst.2017.11.051
17.
Wasim
,
M.
, and
Djukic
,
M. B.
,
2022
, “
External Corrosion of Oil and Gas Pipelines: A Review of Failure Mechanisms and Predictive Preventions
,”
J. Nat. Gas Sci. Eng.
,
100
, p.
104467
.10.1016/j.jngse.2022.104467
18.
Xue
,
H.
,
Ogawa
,
K.
, and
Shoji
,
T.
,
2009
, “
Effect of Welded Mechanical Heterogeneity on Local Stress and Strain in Front of Stationary and Growing Crack Tips
,”
Nucl. Eng. Des.
,
239
(
4
), pp.
628
640
.10.1016/j.nucengdes.2008.12.024
19.
Gao
,
X.
,
Wang
,
H. G.
,
Kang
,
X. W.
, and
Jiang
,
L. Z.
,
2010
, “
Analytic Solutions to Crack Tip Plastic Zone Under Various Loading Conditions
,”
Eur. J. Mech.-A/Solids
,
29
(
4
), pp.
738
745
.10.1016/j.euromechsol.2010.03.003
20.
Lu
,
Z.
,
Shoji
,
T.
,
Takeda
,
Y.
,
Ito
,
Y.
,
Kai
,
A.
, and
Tsuchiya
,
N.
,
2008
, “
Effects of Loading Mode and Water Chemistry on Stress Corrosion Crack Growth Behavior of 316 L HAZ and Weld Metal Materials in High Temperature Pure Water
,”
Corros. Sci.
,
50
(
3
), pp.
625
638
.10.1016/j.corsci.2007.08.021
21.
Camas
,
D.
,
Garcia-Manrique
,
J.
, and
Gonzalez-Herrera
,
A.
,
2012
, “
Crack Front Curvature: Influence and Effects on the Crack Tip Fields in Bi-Dimensional Specimens
,”
Int. J. Fatigue
,
44
, pp.
41
50
.10.1016/j.ijfatigue.2012.05.012
22.
Wang
,
Z.
,
Xue
,
H.
,
Zhang
,
Y.
,
Wang
,
R.
, and
Geng
,
M.
,
2024
, “
Characterization of Mechanical Heterogeneity and Study of the Mechanical Field at the Tip of the Stationary-Growing Crack in Dissimilar Metal Welded Joints
,”
ASME J. Eng. Mater. Technol.
,
146
(
4
), p.
041003
.10.1115/1.4065096
23.
Xue
,
H.
,
He
,
J.
,
Zhang
,
J.
, and
Xue
,
Y.
,
2021
, “
Approach for Obtaining Material Mechanical Properties in Local Region of Structure Based on Accurate Analysis of Micro-Indentation Test
,”
Chin. J. Mech. Eng.
,
34
(
1
), pp.
1
12
.10.1186/s10033-021-00644-6
24.
Rezanezhad
,
M.
,
Lajevardi
,
S. A.
, and
Karimpouli
,
S.
,
2019
, “
Effects of Pore-Crack Relative Location on Crack Propagation in Porous Media Using XFEM Method
,”
Theor. Appl. Fract. Mech.
,
103
, p.
102241
.10.1016/j.tafmec.2019.102241
25.
Zhao
,
C.
,
Ren
,
R.
,
Zhong
,
J.
,
Goh
,
K. L.
,
Zhang
,
K.
,
Zhang
,
Z.
, and
Le
,
G.
,
2022
, “
Intralaminar Crack Propagation of Glass Fiber Reinforced Composite Laminate
,”
Structures
,
41
, pp.
787
803
.10.1016/j.istruc.2022.05.064
26.
Jena
,
J.
,
Singh
,
S. K.
,
Gaur
,
V.
,
Singh
,
I. V.
, and
Natarajan
,
S.
,
2021
, “
A New Framework Based on XFEM for Cracked Semipermeable Piezoelectric Material
,”
Eng. Fract. Mech.
,
253
, p.
107874
.10.1016/j.engfracmech.2021.107874
You do not currently have access to this content.