Skip Nav Destination
Issues
April 2022
ISSN 0094-9930
EISSN 1528-8978
In Memoriam
In Memoriam: Georg Ernest Otto Widera (1938–2022)
J. Pressure Vessel Technol. April 2022, 144(2): 020101.
doi: https://doi.org/10.1115/1.4053918
Editorial
Reviewer's Recognition
J. Pressure Vessel Technol. April 2022, 144(2): 020201.
doi: https://doi.org/10.1115/1.4053851
Research Papers
Design and Analysis
A Deep-Sea Sediment Sampling System: Design, Analysis and Experimental Verification
J. Pressure Vessel Technol. April 2022, 144(2): 021301.
doi: https://doi.org/10.1115/1.4051628
Shakedown and Limit Analysis of Kinematic Hardening Piping Elbows Under Internal Pressure and Bending Moments
J. Pressure Vessel Technol. April 2022, 144(2): 021302.
doi: https://doi.org/10.1115/1.4051630
Topics:
Hardening
,
Kinematics
,
Pipes
,
Pressure
,
Stress
,
Theorems (Mathematics)
The Unified Theory of Tubesheet Design—Part I: Theoretical Foundation
J. Pressure Vessel Technol. April 2022, 144(2): 021303.
doi: https://doi.org/10.1115/1.4051795
Topics:
Design
,
Flanges
,
Heat exchangers
,
Pressure
,
Shells
,
Stress
,
Unified field theories
,
Deflection
,
Fluid dynamics
,
Displacement
The Unified Theory of Tubesheet Design—Part II: Supplement to the Theoretical Analysis
J. Pressure Vessel Technol. April 2022, 144(2): 021304.
doi: https://doi.org/10.1115/1.4051796
Topics:
Design
,
Fluid dynamics
,
Pressure
,
Shells
,
Stiffness
,
Theoretical analysis
,
Tube bending
,
Unified field theories
,
Stress
,
Displacement
The Unified Theory of Tubesheet Design—Part III: Comparison With ASME Method and Case Study
J. Pressure Vessel Technol. April 2022, 144(2): 021305.
doi: https://doi.org/10.1115/1.4051797
Topics:
Design
,
Finite element analysis
,
Heat exchangers
,
Shells
,
Stress
,
Unified field theories
,
Membranes
,
Temperature gradient
,
Pressure
Fluid-Structure Interaction
A Coupled Two-Way Fluid–Structure Interaction Analysis for the Dynamics of a Partially Confined Cantilevered Pipe Under Simultaneous Internal and External Axial Flow in Opposite Directions
J. Pressure Vessel Technol. April 2022, 144(2): 021401.
doi: https://doi.org/10.1115/1.4052209
Topics:
Flow (Dynamics)
,
Fluid structure interaction
,
Fluids
,
Pipes
,
Simulation
,
Dynamics (Mechanics)
On the Hierarchy of Models for Pipe Transients: From Quasi-Two-Dimensional Water Hammer Models to Full Three-Dimensional Computational Fluid Dynamics Models
J. Pressure Vessel Technol. April 2022, 144(2): 021402.
doi: https://doi.org/10.1115/1.4051930
Topics:
Computational fluid dynamics
,
Pipes
,
Turbulence
,
Water hammer
,
Transients (Dynamics)
Investigation of Pump Failure-Induced Waterhammer Waves: A Case Study
J. Pressure Vessel Technol. April 2022, 144(2): 021403.
doi: https://doi.org/10.1115/1.4051512
Topics:
Failure
,
Pipes
,
Piping systems
,
Pressure
,
Pumps
,
Steel
,
Surges
,
Waves
,
Oscillations
,
Flow (Dynamics)
Simulation and Experimental Study on Hydraulic Sandblasting Cutting in Uncontrolled Blowout Well
J. Pressure Vessel Technol. April 2022, 144(2): 021404.
doi: https://doi.org/10.1115/1.4052393
Evaluating the Performance Degradation of Centrifugal Pumps Using the Principal Component Analysis
J. Pressure Vessel Technol. April 2022, 144(2): 021405.
doi: https://doi.org/10.1115/1.4052522
Topics:
Centrifugal pumps
,
Impellers
,
Principal component analysis
,
Pumps
,
Vibration
,
Flow (Dynamics)
,
Bearings
,
Signals
Materials and Fabrication
Pressure Effects on the Lifetime of Gas High Density Polyethylene Pipes
J. Pressure Vessel Technol. April 2022, 144(2): 021501.
doi: https://doi.org/10.1115/1.4051615
Topics:
Density
,
Pipes
,
Polyethylene pipes
,
Pressure
,
Temperature
,
Electromagnetic induction
Numerical Calculation About Influence of Crystallizer Structure on the Stress Evolution Process of Horizontal Continuous Casting of Copper Tubes
J. Pressure Vessel Technol. April 2022, 144(2): 021502.
doi: https://doi.org/10.1115/1.4051616
A Study on Low Cycle Fatigue Life Assessment of Notched Specimens Made of 316 LN Austenitic Stainless Steel
J. Pressure Vessel Technol. April 2022, 144(2): 021503.
doi: https://doi.org/10.1115/1.4051627
Topics:
Fatigue
,
Fatigue life
,
Finite element analysis
,
Low cycle fatigue
,
Stress
,
Temperature
,
Stainless steel
,
Shear (Mechanics)
,
Stress concentration
Evaluation of the High Cycle Fatigue Properties of Double-Side-Welded AISI 321 Plates Using GTAW Process for Pressure Vessels
J. Pressure Vessel Technol. April 2022, 144(2): 021504.
doi: https://doi.org/10.1115/1.4051455
Creep–Cyclic Plasticity and Damage Assessment of an SS304 Weldolet
J. Pressure Vessel Technol. April 2022, 144(2): 021505.
doi: https://doi.org/10.1115/1.4051931
Topics:
Creep
,
Plasticity
,
Stress
,
Fatigue
,
Damage
Mode Mixity in the Fracture Toughness Evaluation of Heat-Affected-Zone Material Using SEN(T) Experiment
J. Pressure Vessel Technol. April 2022, 144(2): 021506.
doi: https://doi.org/10.1115/1.4051981
Topics:
Fracture (Materials)
,
Fracture toughness
,
Heat
,
Base metals
,
Tension
,
Pipes
Creep Deformation Property and Creep Life Evaluation of Super304H
J. Pressure Vessel Technol. April 2022, 144(2): 021507.
doi: https://doi.org/10.1115/1.4052397
Operations, Applications, and Components
Pneumatic Testing of Piping Assemblies: Criteria for Stored Energy and Pinhole Leak Detectability
J. Pressure Vessel Technol. April 2022, 144(2): 021701.
doi: https://doi.org/10.1115/1.4052452
Topics:
Energy storage
,
Leakage
,
Pipes
,
Pressure
,
Temperature
,
Testing
,
Pipelines
Technical Briefs
Automated Procedure for Constructing ASME External Pressure Charts
J. Pressure Vessel Technol. April 2022, 144(2): 024501.
doi: https://doi.org/10.1115/1.4051851
Topics:
External pressure
,
Stress-strain curves
,
Stress
,
Boilers
,
Construction
Use of a True Material Constitutive Model for Stress Analysis of a Swage Autofrettaged Tube Including ASME Code Comparison
J. Pressure Vessel Technol. April 2022, 144(2): 024502.
doi: https://doi.org/10.1115/1.4051688
Topics:
Autofrettage
,
Stress
,
Bose-Einstein condensates
Numerical Simulation and Modeling Convention of Unsteady Fluidelastic Forces of Tube Arrays
J. Pressure Vessel Technol. April 2022, 144(2): 024503.
doi: https://doi.org/10.1115/1.4052694
Topics:
Computer simulation
,
Cylinders
,
Damping
,
Errors
,
Flow (Dynamics)
,
Modeling
,
Stability
,
Simulation
,
Resolution (Optics)
,
Fluids
Assessment of a Computationally Efficient Method for Industrial Simulations of Transient Heat Transfer During Autoclave Curing
J. Pressure Vessel Technol. April 2022, 144(2): 024504.
doi: https://doi.org/10.1115/1.4052119
Retraction
Retracted: “Evaluation of the Structural Integrity of Bell–Spigot Joints in Steel Gas Pipelines” [ASME Journal of Pressure Vessel Technology, 2022, 144(2), p. 021801; DOI: 10.1115/1.4052210]
J. Pressure Vessel Technol. April 2022, 144(2): 027001.
doi: https://doi.org/10.1115/1.4052210
Topics:
Pipelines
,
Pressure vessels
,
Steel
Email alerts
RSS Feeds
Statistical Characteristic of the Transition Temperature Shift for Reactor Pressure Vessel Steel
J. Pressure Vessel Technol
Master Curve Evaluation Using the Fracture Toughness Data at Low Temperature of T-T0 < −50°C
J. Pressure Vessel Technol
Mach Number Correction of Rectangular Duct Criticals
J. Pressure Vessel Technol
Optimization of High-Vapor Pressure Condensate Pipeline Commissioning Schemes in Large Uplift Environments
J. Pressure Vessel Technol
Evaluation Of The Structural Suitability Of Lifting Trunnions In Large Pressure Vessels
J. Pressure Vessel Technol