Abstract

Metrology is extensively used in the manufacturing industry to determine whether the dimensions of parts are within their tolerance interval. However, measurement errors cannot be avoided. Metrology experts are of course aware of it and they are able to identify the different sources that contribute to making errors. In this paper, the probability density function of the measurement error is considered as a given input. As it is rare to have access to this distribution, there are very few methods in the literature that aim to use this knowledge directly to improve the measurements obtained in metrology. A first method is proposed to correct the effects of the measurement errors on the distribution that characterizes a set of measurements. Then a second method is proposed to estimate the true value that is hidden behind each single measurement, by removing the measurement error statistically. The second method is based on the output knowledge of the first, which is integrated with Bayesian statistics. The relevance of these two methods is shown through two examples applied on simulated data.

References

1.
,
BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML,
2008
, “
Evaluation of Measurement Data – Guide to the Expression of Uncertainty in Measurement
,” Joint Committee for Guides in Metrology, JCGM 100:2008.
2.
Werner
,
T.
, and
Weckenmann
,
A.
,
2012
, “
Sustainable Quality Assurance by Assuring Competence of Employees
,”
Measurement
,
45
(
6
), pp.
1534
1539
.10.1016/j.measurement.2012.02.025
3.
Charki
,
A.
, and
Pavese
,
F.
,
2019
, “
Data Comparisons and Uncertainty: A Roadmap for Gaining in Competence and Improving the Reliability of Results
,”
Int. J. Metrol. Qual. Eng.
,
10
, pp.
1
1
.10.1051/ijmqe/2018016
4.
Sal
,
B.
,
García-Saiz
,
D.
, and
Sánchez
,
P.
,
2021
,
Automated Generation of Datasets from Fishbone Diagrams, Model and Data Engineering: 10th International Conference, MEDI 2021
, Tallinn, Estonia, June 21–23, 2021, pp.
249
263
.
5.
Sanchez-Marquez
,
R.
, and
Vivas
,
J. J.
,
2021
, “
Building a Cpk Control chart - A Novel and Practical Method for Practitioners
,”
Comput. Ind. Eng.
,
158
, p.
107428
.10.1016/j.cie.2021.107428
6.
Weckenmann
,
A.
, and
Knauer
,
M.
,
1999
, “
Causes and Consequences of Measurement Uncertainty in Production Metrology
,”
Elektrotech. Inftech.
116
, pp.
234
239
.10.1007/BF03159510
7.
ISO
,
1998
, “
ISO 14253-1: Geometrical Product Specifications (GPS) - Inspection by Measurement of Workpieces and Measuring equipments - Part 1: Decision Rules for Proving Conformance or Non-Conformance With Specifications
,” International Organization for Standardization, Geneva, Switzerland.
8.
Kreinovich
,
V.
,
2004
, “
Probabilities, Intervals, What Next? Optimization Problems Related to Extension of Interval Computations to Situations With Partial Information About Probabilities
,”
J. Global Optim.
,
29
(
3
), pp.
265
280
.10.1023/B:JOGO.0000044769.91651.87
9.
Ferrero
,
A.
, and
Salicone
,
S.
,
2009
, “
An Innovative Method for the Comparison of Measurement Results
,”
Transverse Disciplines in Metrology
,
Proceedings of the 13th International Metrology Congress, Lille, France,
pp.
741
754
.
10.
Grous
,
A.
,
2011
, “
Fundamentals of Error Analysis and Their Uncertainties in Dimensional Metrology Applied to Science and Technology
,”
Applied Metrology for Manufacturing Engineering
,
Wiley Ltd
,
London; Hoboken, NJ
, pp.
1
84
.
11.
Hibbert
,
B.
,
2013
, “
Evaluation of Measurement Data: The Role of Measurement Uncertainty in Conformity Assessment
,”
Chem. Int.
,
35
(
2
), pp.
22
23
.10.1515/ci.2013.35.2.22
12.
Carmignato
,
S.
,
De Chiffre
,
L.
,
Bosse
,
H.
,
Leach
,
R.
,
Balsamo
,
A.
, and
Estler
,
W.
,
2020
, “
Dimensional Artefacts to Achieve Metrological Traceability in Advanced Manufacturing
,”
CIRP Ann.
,
69
(
2
), pp.
693
716
.10.1016/j.cirp.2020.05.009
13.
Stolfi
,
A.
,
Thompson
,
M. K.
,
Carli
,
L.
, and
De Chiffre
,
L.
,
2016
, “
Quantifying the Contribution of Post-Processing in Computed Tomography Measurement Uncertainty
,”
Proc. CIRP
,
43
, pp.
297
302
.10.1016/j.procir.2016.02.123
14.
Timmermann
,
M.
,
Werner
,
T.
, and
Weckenmann
,
A.
,
2011
, “
An Approach for Efficient Implementation of Uncertainty Analysis in Production-Related Measurement Processes
,”
Proceedings of the 14th Joint International IMEKO TC1 + TC7 + TC 13 Symposium: Intelligent Quality Measurements - Theory, Education and Training in Conjunction With the 56th IWK, Ilmenau University of Technology and the 11th SpectroNet Collaboration Forum
, Aug. 31–Sept. 2, JenTower Jena, Germany.
15.
Yang
,
R.
,
Apley
,
D.
,
Staum
,
J.
, and
Ruppert
,
D.
,
2018
, “
Density Deconvolution With Additive Measurement Errors Using Quadratic Programming
,” arXiv:1812.01786.
16.
ISO
,
1994
, “
ISO 5725-1:1994: Accuracy (Trueness and Precision) of Measurement Methods and Results – Part 1: General Principles and Definitions
,”
International Organization for Standardization
,
Geneva, Switzerland
.
17.
ISO
,
2016
, “
ISO 21748:2016: Guidance for the Use of Repeatability, Reproducibility and Trueness Estimates in Measurement Uncertainty Evaluation
,”
International Organization for Standardization
,
Geneva, Switzerland
.
18.
Fish
,
L. J.
,
1988
, “
Why Multivariate Methods Are Usually Vital
,”
Meas. Eval. Couns. Develop.
,
21
(
3
), pp.
130
137
.10.1080/07481756.1988.12022895
19.
Fabien
,
G.
,
2015
, “
Can we Dispense With the Notion of ‘True Value’ in Metrology
?,”
Standardization in Measurement: Philosophical, Historical and Sociological Issues
,
Pickering & Chatto
,
Paris, France
, pp.
81
93
.
20.
Kane
,
V. E.
,
1986
, “
Process Capability Indices
,”
J. Qual. Technol.
,
18
(
1
), pp.
41
52
.10.1080/00224065.1986.11978984
21.
Ferson
,
S.
,
Kreinovich
,
V.
,
Ginzburg
,
L.
,
Myers
,
D.
, and
Sentz
,
K.
,
2003
, “
Constructing Probability Boxes and Dempster-Shafer Structures
,” Technical report,
Sandia National Laboratories
,
Albuquerque, NM
.
22.
Granvilliers
,
L.
,
Kreinovich
,
V.
, and
Müller
,
N.
,
2004
, “
Novel Approaches to Numerical Software With Result Verification
,”
Numerical Software With Result Verification
,
R.
Alt
,
A.
Frommer
,
R. B.
Kearfott
, and
W.
Luther
, eds.,
Springer
,
Berlin Heidelberg
, pp.
274
305
.
23.
Pogány
,
T. K.
, and
Nadarajah
,
S.
,
2013
, “
On the Convolution of Normal and t Random Variables
,”
Statistics
,
47
(
6
), pp.
1363
1369
.10.1080/02331888.2012.694447
24.
Bailon
,
M. L.
, and
Horntrop
,
D. J.
,
2006
, “
On the Calculation of Convolutions With Gaussian Kernels
,”
Appl. Math. Comput.
,
176
(
1
), pp.
383
387
.10.1016/j.amc.2005.09.025
25.
Caballero-Gaudes
,
C.
,
Moia
,
S.
,
Panwar
,
P.
,
Bandettini
,
P. A.
, and
Gonzalez-Castillo
,
J.
,
2019
, “
A Deconvolution Algorithm for Multi-Echo Functional MRI: Multi-Echo Sparse Paradigm Free Mapping
,”
NeuroImage
,
202
, p.
116081
.10.1016/j.neuroimage.2019.116081
26.
Mahata
,
K.
, and
Hyder
,
M. M.
,
2020
, “
Sparse Deconvolution Via Off-Grid T.V Minimization
,”
Signal Process.
,
170
, p.
107406
.10.1016/j.sigpro.2019.107406
27.
Lainiotis
,
D. G.
,
Katsikas
,
S. K.
, and
Likothanassis
,
S. D.
,
1988
, “
Optimal Seismic Deconvolution
,”
Signal Process.
,
15
(
4
), pp.
375
404
.10.1016/0165-1684(88)90058-8
28.
Papoulis
,
A.
, and
Pillai
,
S. U.
,
2002
,
Probability, Random Variables and Stochastic Processes
, McGraw-Hill Electrical and Electronic Engineering Series, Probability, Random Variables and Stochastic Processes, 4th ed.,
McGraw-Hill
,
Boston Burr Ridge, IL, and Dubuque, IA
.
29.
Heinrich
,
L.
,
1982
, “
Factorization of the Characteristic Function of a Sum of Dependent Random Variables
,”
Lithuanian Math. J.
,
22
(
1
), pp.
92
100
.10.1007/BF00967932
30.
Alkam
,
F.
,
Pereira
,
I.
, and
Lahmer
,
T.
,
2020
, “
Qualitatively-Improved Identified Parameters of Prestressed Concrete Catenary Poles Using Sensitivity-Based Bayesian Approach
,”
Results Eng.
,
6
, p.
100104
.10.1016/j.rineng.2020.100104
31.
Baudin
,
M.
,
Dutfoy
,
A.
,
Iooss
,
B.
, and
Popelin
,
A.-L.
,
2016
, “
OpenTURNS: An Industrial Software for Uncertainty Quantification in Simulation
,”
Handbook of Uncertainty Quantification
,
R.
Ghanem
,
D.
Higdon
, and
H.
Owhadi
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
1
38
.
32.
,
2020
, “
Array Programming With NumPy
,”
Nature
,
585
(
7825
), pp.
357
362
.10.1038/s41586-020-2649-2
33.
Lebrun
,
R.
, and
Dutfoy
,
A.
,
2009
, “
An Innovating Analysis of the Nataf Transformation From the Copula Viewpoint
,”
Probab. Eng. Mech.
,
24
(
3
), pp.
312
320
.10.1016/j.probengmech.2008.08.001
34.
Nataf
,
A.
,
1962
, “
Détermination Des Distributions de Probabilités Dont Les Marges Sont Données
,”
C. R. Hebdomadaires Des Séances de L'Académie Des Sci., Paris
,
255
, pp.
42
43
.
35.
Liu
,
P.-L.
, and
Kiureghian
,
A. D.
,
1986
, “
Multivariate Distribution Models With Prescribed Marginals and Covariances
,”
Probab. Eng. Mech.
,
1
(
2
), pp.
105
112
.10.1016/0266-8920(86)90033-0
36.
Schwartz
,
G.
,
1978
, “
Estimating the Dimension of a Model
,”
Ann. Stat.
,
6
(
2
), pp.
461
464
.10.2307/295888
37.
Possolo
,
A.
,
2018
, “
Statistics and Metrology
,”
Wiley StatsRef: Statistics Reference Online
,
Wiley Ltd
., New York, pp.
1
8
.10.1002/9781118445112.stat08086
38.
Willink
,
R.
,
2006
, “
Principles of Probability and Statistics for Metrology
,”
Metrologia
,
43
(
4
), pp.
S211
S219
.10.1088/0026-1394/43/4/S07
39.
Forbes
,
A. B.
, and
Sousa
,
J. A.
,
2011
, “
The GUM, Bayesian Inference and the Observation and Measurement Equations
,”
Measurement
,
44
(
8
), pp.
1422
1435
.10.1016/j.measurement.2011.05.007
40.
Rossat
,
D.
,
2022
, “
Bayesian Techniques for Inverse Uncertainty Quantification for Multi-Physics Models of Large Containment Structures
,” Ph.D. thesis,
Université Grenoble Alpes
,
France
.
41.
Smith
,
J. O.
,
2011
,
Spectral Audio Signal Processing
,
W3K Publishing
,
Stanford, CA
.
42.
Zhang
,
X.
, and
Pandey
,
M. D.
,
2013
, “
Structural Reliability Analysis Based on the Concepts of Entropy, Fractional Moment and Dimensional Reduction Method
,”
Struct. Saf.
,
43
, pp.
28
40
.10.1016/j.strusafe.2013.03.001
You do not currently have access to this content.