Abstract

This paper examines the performance of a regenerative dynamic vibration absorber, dubbed energy harvesting-enabled tuned mass-damper-inerter (EH-TMDI), for simultaneous vibration suppression and energy harvesting in white-noise-excited damped linear primary structures. Both single-degree-of-freedom (SDOF) structures under force and base excitations and multi‐degrees-of-freedom (MDOF) structures under correlated random forces are studied. The EH-TMDI includes an electromagnetic motor (EM), assumed to behave as a shunt damper, sandwiched between a secondary mass and an inerter element connected in series. The latter element resists relative acceleration at its ends through a constant termed inertance known to be readily scalable in actual inerter device implementations. In this regard, attention is herein focused on gauging the available energy for harvesting at the EM and the displacement variance of the primary structure as the inertance increases through comprehensive parametric investigations. This is supported by adopting simplified inertance-dependent tuning formulae for the EH-TMDI stiffness and damping properties and deriving in closed-form the response of white-noise-excited EH-TMDI-equipped SDOF and MDOF systems through linear random vibration analyses. It is found that lightweight EH-TMDIs, having 1% the mass of the primary structure, achieve improved vibration suppression and energy harvesting performance as inertance amplifies. For SDOF structures with grounded inerter, the rate of improvement is higher as the inherent structural damping reduces and the EM shunt damping increases. For MDOF structures with nongrounded inerter, improvement rate is higher as the primary structure flexibility between the two EH-TMDI attachment points increases.

References

1.
Den Hartog
,
J. P.
,
1956
,
Mechanical Vibrations
, 4th ed.,
McGraw-Hill
,
New York
.
2.
Elias
,
A.
, and
Matsagar
,
V.
,
2017
, “
Research Developments in Vibration Control of Structures Using Passive Tuned Mass Dampers
,”
Annu. Rev. Control
,
44
, pp.
129
156
.10.1016/j.arcontrol.2017.09.015
3.
Warburton
,
G. B.
,
1982
, “
Optimum Absorber Parameters for Various Combinations of Response and Excitation Parameters
,”
Earthquake Eng. Struct. Dyn.
,
10
(
3
), pp.
381
401
.10.1002/eqe.4290100304
4.
Lee
,
D.
, and
Taylor
,
D. P.
,
2001
, “
Viscous Damper Development and Future Trends
,”
Struct. Des. Tall Build.
,
10
(
5
), pp.
311
320
.10.1002/tal.188
5.
Palomera-Arias
,
R.
,
Connor
,
J. J.
, and
Ochsendorf
,
J. A.
,
2008
, “
Feasibility Study of Passive Electromagnetic Damping Systems
,”
J. Struct. Eng., ASCE
,
134
(
1
), pp.
164
170
.10.1061/(ASCE)0733-9445(2008)134:1(164)
6.
Zhu
,
S.
,
Shen
,
W. A.
, and
Xu
,
Y.-L.
,
2012
, “
Linear Electromagnetic Devices for Vibration Damping and Energy Harvesting: Modeling and Testing
,”
Eng. Struct.
,
34
, pp.
198
212
.10.1016/j.engstruct.2011.09.024
7.
Adhikari
,
S.
,
Friswell
,
M. I.
, and
Inman
,
D. J.
,
2009
, “
Piezoelectric Energy Harvesting From Broadband Random Vibrations
,”
Smart Mater. Struct.
,
18
(
11
), p.
115005
.10.1088/0964-1726/18/11/115005
8.
Tang
,
X.
, and
Zuo
,
L.
,
2012
, “
Vibration Energy Harvesting From Random Force and Motion Excitations
,”
Smart Mater. Struct.
,
21
(
7
), p.
075025
.10.1088/0964-1726/21/7/075025
9.
Zuo
,
L.
, and
Tang
,
X.
,
2013
, “
Large-Scale Vibration Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
24
(
11
), pp.
1405
1430
.10.1177/1045389X13486707
10.
Shen
,
W.
,
Zhu
,
S.
,
Xu
,
Y.-L.
, and
Zhu
,
H.-P.
,
2018
, “
Energy Regenerative Tuned Mass Dampers in High-Rise Buildings
,”
Struct. Control Health Monit.
,
25
(
2
), p.
e2072
.10.1002/stc.2072
11.
Zuo
,
L.
, and
Cui
,
W.
,
2013
, “
Dual-Functional Energy-Harvesting and Vibration Control: Electromagnetic Resonant Shunt Series Tuned Mass Dampers
,”
ASME J. Vib. Acoust.
,
135
(
5
), p.
051018
.10.1115/1.4024095
12.
Gonzalez-Buelga
,
A.
,
Clare
,
L. R.
,
Cammarano
,
A.
,
Neild
,
S. A.
,
Burrow
,
S. G.
, and
Inman
,
D. J.
,
2014
, “
An Optimised Tuned Mass Damper/Harvester Device
,”
Struct. Control Health Monit.
,
21
(
8
), pp.
1154
1169
.10.1002/stc.1639
13.
Shen
,
W.
,
Zhu
,
S.
, and
Zhu
,
H.
,
2019
, “
Unify Energy Harvesting and Vibration Control Functions in Randomly Excited Structures With Electromagnetic Devices
,”
J. Eng. Mech., ASCE
,
145
(
1
), p.
04018115
.10.1061/(ASCE)EM.1943-7889.0001548
14.
Lazar
,
I. F.
,
Neild
,
S. A.
, and
Wagg
,
D. J.
,
2014
, “
Using an Inerter-Based Device for Structural Vibration Suppression
,”
Earthquake Eng. Struct. Dyn.
,
43
(
8
), pp.
1129
1147
.10.1002/eqe.2390
15.
Marian
,
L.
, and
Giaralis
,
A.
,
2014
, “
Optimal Design of a Novel Tuned Mass-Damper-Inerter (TMDI) Passive Vibration Control Configuration for Stochastically Support-Excited Structural Systems
,”
Probab. Eng. Mech.
,
38
, pp.
156
164
.10.1016/j.probengmech.2014.03.007
16.
Cassidy
,
I. L.
,
Scruggs
,
J. T.
,
Behrens
,
S.
, and
Gavin
,
H. P.
,
2011
, “
Design and Experimental Characterization of an Electromagnetic Transducer for Large-Scale Vibratory Energy Harvesting Applications
,”
J. Intell. Mater. Syst. Struct.
,
22
(
17
), pp.
2009
2024
.10.1177/1045389X11421824
17.
Green
,
P. L.
,
Hendijanizadeh
,
M.
,
Simeone
,
L.
, and
Elliott
,
S. J.
,
2016
, “
Probabilistic Modelling of a Rotational Energy Harvester
,”
J. Intell. Mater. Syst. Struct.
,
27
(
4
), pp.
528
536
.10.1177/1045389X15573343
18.
Zhu
,
H.
,
Li
,
Y.
,
Shen
,
W.
, and
Zhu
,
S.
,
2019
, “
Mechanical and Energy-Harvesting Model for Electromagnetic Inertial Mass Dampers
,”
Mech. Syst. Signal Process.
,
120
, pp.
203
220
.10.1016/j.ymssp.2018.10.023
19.
Salvi
,
J.
, and
Giaralis
,
A.
,
2016
, “
Concept Study of a Novel Energy Harvesting-Enabled Tuned Mass Damper-Inerter (EH-TMDI) Device for Vibration Control of Harmonically-Excited Structures
,”
J Phys Conf Series
744
, p.
012082
.10.1088/1742-6596/744/1/012082
20.
Marian
,
L.
, and
Giaralis
,
A.
,
2017
, “
The Tuned Mass-Damper-Inerter for Harmonic Vibrations Suppression, Attached Mass Reduction, and Energy Harvesting
,”
Smart Struct. Syst.
,
19
(
6
), pp.
665
678
.10.12989/sss.2017.19.6.665
21.
Joubaneh
,
E. F.
, and
Barry
,
O. R.
,
2019
, “
On the Improvement of Vibration Mitigation and Energy Harvesting Using Electromagnetic Vibration Absorber-Inerter: Exact H2 Optimization
,”
ASME J. Vib. Acoust.
,
141
(
6
), p.
061007
.10.1115/1.4044303
22.
Smith
,
M. C.
,
2002
, “
Synthesis of Mechanical Networks: The Inerter
,”
IEEE Trans. Autom. Control
,
47
(
10
), pp.
1648
1662
.10.1109/TAC.2002.803532
23.
Smith
,
M. C.
,
2020
, “
The Inerter: A Retrospective
,”
Annu. Rev. Control, Rob., Auton. Syst.
,
3
(
1
), pp.
361
391
.10.1146/annurev-control-053018-023917
24.
Papageorgiou
,
C.
, and
Smith
,
M. C.
,
2005
, “
Laboratory Experimental Testing of Inerters
,”
Proceedings of the 44th IEEE Conference on Decision and Control and European Control Conference
, Seville, Spain, Dec. 12–15, pp.
3351
3356
.10.1109/CDC.2005.1582679
25.
Wang
,
F. C.
,
Hong
,
M. F.
, and
Lin
,
T. C.
,
2011
, “
Designing and Testing a Hydraulic Inerter
,”
Proc. Inst. Mech. Eng., Part C
,
225
(
1
), pp.
66
72
.10.1243/09544062JMES2199
26.
Pietrosanti
,
D.
,
De Angelis
,
M.
, and
Giaralis
,
A.
,
2020
, “
Experimental Shaking Table Study of Nonlinear SDOF System Equipped With Tuned Mass Damper Inerter (TMDI) Under Harmonic Excitation
,”
Int. J. Mech. Sci.
,
184
, p.
105762
.10.1016/j.ijmecsci.2020.105762
27.
Swift
,
S. J.
,
Smith
,
M. C.
,
Glover
,
A. R.
,
Papageorgiou
,
C.
,
Gartner
,
B.
, and
Houghton
,
N. E.
,
2013
, “
Design and Modelling of a Fluid Inerter
,”
Int. J. Control
,
86
(
11
), pp.
2035
2051
.10.1080/00207179.2013.842263
28.
Gonzalez-Buelga
,
A.
,
Clare
,
L.
,
Neild
,
S.
,
Jiang
,
J. Z.
, and
Inman
,
D. J.
,
2015
, “
An Electromagnetic Inerter-Based Vibration Suppression Device
,”
Smart Mater. Struct.
,
24
(
5
), p.
055015
.10.1088/0964-1726/24/5/055015
29.
Liu
,
X.
,
Jiang
,
J. Z.
,
Titurus
,
B.
, and
Harrison
,
A.
,
2018
, “
Model Identification Methodology for Fluid-Based Inerters
,”
Mech. Syst. Signal Process.
,
106
, pp.
479
494
.10.1016/j.ymssp.2018.01.018
30.
Taflanidis
,
A. A.
,
Giaralis
,
A.
, and
Patsialis
,
D.
,
2019
, “
Multi-Objective Optimal Design of Inerter-Based Vibration Absorbers for Earthquake Protection of Multi-Storey Building Structures
,”
J. Franklin Inst.
,
356
(
14
), pp.
7754
7784
.10.1016/j.jfranklin.2019.02.022
31.
De Angelis
,
M.
,
Giaralis
,
A.
,
Petrini
,
F.
, and
Pietrosanti
,
D.
,
2019
, “
Optimal Tuning and Assessment of Inertial Dampers With Grounded Inerter for Vibration Control of Seismically Excited Base-Isolated Systems
,”
Eng. Struct.
,
196
, p.
109250
.10.1016/j.engstruct.2019.05.091
32.
Giaralis
,
A.
, and
Petrini
,
F.
,
2017
, “
Wind-Induced Vibration Mitigation in Tall Buildings Using the Tuned Mass-Damper-Inerter (TMDI)
,”
J. Struct. Eng., ASCE
,
143
(
9
), p.
04017127
.10.1061/(ASCE)ST.1943-541X.0001863
33.
Giaralis
,
A.
, and
Taflanidis
,
A. A.
,
2018
, “
Optimal Tuned Mass‐Damper‐Inerter (TMDI) Design for Seismically Excited MDOF Structures With Model Uncertainties Based on Reliability Criteria
,”
Struct. Control Health Monit.
,
25
(
2
), p.
e2082
.10.1002/stc.2082
34.
Petrini
,
F.
,
Giaralis
,
A.
, and
Wang
,
Z.
,
2020
, “
Optimal Tuned Mass-Damper-Inerter (TMDI) Design in Wind-Excited Tall Buildings for Occupants' Comfort Serviceability Performance and Energy Harvesting
,”
Eng. Struct.
,
204
, p.
109904
.10.1016/j.engstruct.2019.109904
35.
Hu
,
Y.
,
Chen
,
M. Z. Q.
,
Xu
,
S.
, and
Liu
,
Y.
,
2017
, “
Semiactive Inerter and Its Application in Adaptive Tuned Vibration Absorbers
,”
IEEE Trans. Control Syst. Technol.
,
25
(
1
), pp.
294
300
.10.1109/TCST.2016.2552460
36.
Pietrosanti
,
D.
,
De Angelis
,
M.
, and
Basili
,
M.
,
2020
, “
A Generalized 2-DOF Model for Optimal Design of MDOF Structures Controlled by Tuned Mass Damper Inerter (TMDI
),”
Int. J. Mech. Sci.
,
185
, p.
105849
.10.1016/j.ijmecsci.2020.105849
37.
Brzeski
,
P.
,
Lazarek
,
M.
, and
Perlikowski
,
P.
,
2017
, “
Experimental Study of the Novel Tuned Mass Damper With Inerter Which Enables Changes of Inertance
,”
J. Sound Vib.
,
404
, pp.
47
57
.10.1016/j.jsv.2017.05.034
38.
Lazarek
,
M.
,
Brzeski
,
P.
, and
Perlikowski
,
P.
,
2019
, “
Design and Modelling of the CVT for Adjustable Inerter
,”
J. Franklin Inst.
,
356
(
14
), pp.
7611
7625
.10.1016/j.jfranklin.2018.11.011
39.
Wang
,
Z.
, and
Giaralis
,
A.
,
2021
, “
Top-Storey Softening for Enhanced Mitigation of Vortex Shedding Induced Vibrations in Wind-Excited Optimal Tuned Mass Damper Inerter (TMDI)-Equipped Tall Buildings
,”
J. Struct. Eng., ASCE
,
147
(
1
), p.
04020283
.10.1061/(ASCE)ST.1943-541X.0002838
40.
De Angelis
,
M.
,
Perno
,
S.
, and
Reggio
,
A.
,
2012
, “
Dynamic Response and Optimal Design of Structures With Large Mass Ratio TMD
,”
Earthquake Eng. Struct. Dyn.
,
41
(
1
), pp.
41
60
.10.1002/eqe.1117
41.
Luo
,
Y.
,
Sun
,
H.
,
Wang
,
X.
,
Zuo
,
L.
, and
Chen
,
C.
,
2017
, “
Wind Induced Vibration Control and Energy Harvesting of Electromagnetic Resonant Shunt Tuned Mass-Damper-Inerter for Building Structures
,”
Shock Vib.
,
2017
, p.
4180134
.
42.
Marian
,
L.
, and
Giaralis
,
A.
,
2013
, “
Optimal Design of Inerter Devices Combined With TMDs for Vibration Control of Buildings Exposed to Stochastic Seismic Excitations
,”
Proceedings of the 11th International Conference on Structural Safety and Reliability for Integrating Structural Analysis, Risk and Reliability (ICOSSAR)
,
New York
, Paper No. 137.https://www.researchgate.net/publication/332028176_Optimal_design_of_inerter_devices_combined_with_TMDs_for_vibration_control_of_buildings_exposed_to_stochastic_seismic_excitations
43.
Sarkar
,
R.
, and
Fitzgerald
,
B.
,
2020
, “
Vibration Control of Spar-Type Floating Offshore Wind Turbine Towers Using a Tuned Mass-Damper-Inerter
,”
Struct. Control Health Monit.
,
27
(
1
), p.
e2471
.10.1002/stc.2471
44.
Dai
,
J.
,
Xu
,
Z. D.
, and
Gai
,
P. P.
,
2019
, “
Tuned Mass-Damper-Inerter Control of Wind-Induced Vibration of Flexible Structures Based on Inerter Location
,”
Eng. Struct.
,
199
(
15
), p.
109585
.10.1016/j.engstruct.2019.109585
45.
Gonzalez ‐Buelga
,
A.
,
Lazar
,
I. F.
,
Jiang
,
J. Z.
,
Neild
,
S. A.
, and
Inman
,
D. J.
,
2017
, “
Assessing the Effect of Nonlinearities on the Performance of a Tuned Inerter Damper
,”
Struct. Control Health Monit.
,
24
(
3
), p.
e1879
.10.1002/stc.1879
You do not currently have access to this content.