Abstract

One of many barriers to the deployment of floating offshore wind turbines is the high cost of vessel time needed for soil investigations and anchor installation. A multiline anchor system is proposed in which multiple floating offshore wind turbines (FOWTs) are connected to a single caisson. The connection of multiple FOWTs to a single anchor introduces interconnectedness throughout the wind farm. Previous work by the authors has shown that this interconnectedness reduces the reliability of the FOWT below an acceptable level when exposed to survival loading conditions. To combat the reduction in system reliability an overstrength factor (OSF) is applied to the anchors functioning as an additional safety factor. For a 100 turbine wind farm, single-line system reliabilities can be achieved using the multiline system with an OSF of 1.10, a 10% increase in multiline anchor safety factors for all anchors in a farm.

References

1.
Kumar
,
Y.
,
Ringenberg
,
J.
,
Depuru
,
S. S.
,
Devabhaktuni
,
V. K.
,
Lee
,
J. W.
,
Nikolaidis
,
E.
,
Andersen
,
B.
, and
Afjeh
,
A.
,
2016
, “
Wind Energy: Trends and Enabling Technologies
,”
Renewable Sustainable Energy Rev.
,
53
, pp.
209
24
.10.1016/j.rser.2015.07.200
2.
Musial
,
W.
,
Beiter
,
P.
,
Schwabe
,
P.
,
Tian
,
T.
,
Stehly
,
T.
, and
Spitsen
,
P.
,
2016
, “
2016 Offshore Wind Technologies Market Report
,”
U.S. Department of Energy
, Oak Ridge, TN, p.
131
.
3.
Musial
,
W.
,
Beiter
,
P.
,
Schwabe
,
P.
,
Tian
,
T.
,
Stehly
,
T.
,
Spitsen
,
P.
,
Robertson
,
A.
, and
Gevorgian
,
V.
,
2017
, “
2017 Offshore Wind Technologies Market Report
,” U.S. Department of Energy, Oak Ridge, TN, p.
142
.
4.
Skaare
,
B.
,
2017
, “
Development of the Hywind Concept
,”
ASME
Paper No. OMAE2017-62710.10.1115/OMAE2017-62710
5.
Castro-Santos
,
L.
,
Filgueira-Vizoso
,
A.
,
Carral-Couce
,
L.
, and
Formoso
,
J. Á. F.
,
2016
, “
Economic Feasibility of Floating Offshore Wind Farms
,”
Energy
,
112
(
2016
), pp.
868
882
.10.1016/j.energy.2016.06.135
6.
Fontana
,
C. M.
,
Arwade
,
S. R.
,
DeGroot
,
D. J.
,
Hallowell
,
S. T.
,
Aubeny
,
C.
,
Landon
,
M.
,
Myers
,
A.
,
Hajjar
,
J.
, and
Ozmultu
,
S.
,
2017
, “
Multiline Anchors for the OC4 Semisubmersible Floating System
,” Proceedings of the International Offshore and Polar Engineering Conference, San Francisco, CA, June 25–30, Paper No.
ISOPE-I-17-478
.https://onepetro.org/ISOP EIOP EC/proceedings-abstract/ISOP E17/All-ISOP E17/ISOP E-I-17-478/18194
7.
Hallowell
,
S. T.
,
Arwade
,
S. R.
,
Fontana
,
C. M.
,
DeGroot
,
D. J.
,
Aubeny
,
C. P.
,
Diaz
,
B. D.
,
Myers
,
A. T.
, and
Landon
,
M. E.
,
2018
, “
System Reliability of Floating Offshore Wind Farms With Multiline Anchors
,”
Ocean Eng.
,
160
, pp.
94
104
.10.1016/j.oceaneng.2018.04.046
8.
American Bureau of Shipping (ABS)
,
2015
, “
Guide for Building and Classing Floating Offshore Wind Turbine Installations, Standardization
,” American Bureau of Shipping, Houston, TX, Standard No. 195.
9.
Viselli
,
A. M.
,
Goupee
,
A. J.
,
Dagher
,
H. J.
, and
Allen
,
C. K.
,
2016
, “
Design and Model Confirmation of the Intermediate Scale VolturnUS Floating Wind Turbine Subjected to Its Extreme Design Conditions Offshore Maine
,”
Wind Energy
,
19
(
6
), pp.
1161
77
.10.1002/we.1886
10.
Vivoda
,
V.
,
2012
, “
Japan's Energy Security Predicament Post-Fukushima
,”
Energy Policy
,
46
, pp.
135
143
.10.1016/j.enpol.2012.03.044
11.
Onstad
,
A. E.
,
Stokke
,
M.
, and
Sætran
,
L.
,
2016
, “
Site Assessment of the Floating Wind Turbine Hywind Demo
,”
Energy Procedia
,
94
, pp.
409
416
.10.1016/j.egypro.2016.09.205
12.
Beiter
,
P.
,
Musial
,
W.
,
Kilcher
,
L.
,
Maness
,
M.
, and
Smith
,
A.
,
2017
, “
An Assessment of the Economic Potential of Offshore Wind in the United States From 2015 to 2030
,”
An Assessment of the Economic Potential of Offshore Wind in the United States From 2015 to 2030
,
National Renewable Energy Laboratory
,
Golden, CO
.
13.
National Renewable Energy Laboratory (NREL)
,
2018
, “
Annual Technology Baseline
,” National Renewable Energy Laboratory, Golden, CO, accessed July 2020, https://atb.nrel.gov/electricity/2019/index.html?t=ow
14.
Myhr
,
A.
,
Bjerkseter
,
C.
,
Ågotnes
,
A.
, and
Nygaard
,
T. A.
,
2014
, “
Levelised Cost of Energy for Offshore Floating Wind Turbines in a Lifecycle Perspective
,”
Renewable Energy
,
66
, pp.
714
728
.10.1016/j.renene.2014.01.017
15.
Castro-Santos
,
L.
,
Ferreño González
,
S.
, and
Diaz-Casas
,
V.
,
2013
, “
Methodology to Calculate Mooring and Anchoring Costs of Floating Offshore Wind Devices
,”
Proc. Int. Conf. Renewable Energies Power Qual.
,
1
(
11
), p.
5
.10.3390/en9050324
16.
Fontana
,
C. M.
,
Arwade
,
S. R.
,
DeGroot
,
D. J.
,
Myers
,
A. T.
,
Landon
,
M. E.
, and
Aubeny
,
C. P.
,
2016
, “
Efficient Multiline Anchor Systems for Floating Offshore Wind Turbines
,”
ASME
Paper No. OMAE2016-54476.10.1115/OMAE2016-54476
17.
Hallowell
,
S. T.
,
Arwade
,
S. R.
,
Fontana
,
C. M.
,
DeGroot
,
D. J.
,
Diaz
,
B. D.
, and
Landon
,
M. E.
,
2017
, “
Reliability of Mooring Lines and Shared Anchors of Floating Offshore Wind Turbines
,” The 27th International Ocean and Polar Engineering Conference, San Francisco, CA. June 25–30, Paper No.
ISOPE-I-17-441
.https://onepetro.org/ISOP EIOP EC/proceedings-abstract/ISOP E17/All-ISOP E17/ISOP E-I-17-441/18044
18.
Bae
,
Y. H.
,
Kim
,
M. H.
, and
Kim
,
H. C.
,
2017
, “
Performance Changes of a Floating Offshore Wind Turbine With Broken Mooring Line
,”
Renewable Energy
,
101
, pp.
364
375
.10.1016/j.renene.2016.08.044
19.
Det Norske Veritas (DNV)
,
2013
, “
Design of Floating Wind Turbine Structures
,” Det Norske Veritas, Høvik, Norway, Standard No. OS-J103—124.
20.
Hajela
,
P.
, and
Lee
,
E.
,
1995
, “
Genetic Algorithms in Truss Topological Optimization
,”
Int. J. Solids Struct.
,
32
(
22
), pp.
3341
3357
.10.1016/0020-7683(94)00306-H
21.
Rozvany
,
G. I. N.
,
1996
, “
Difficulties in Truss Topology Optimization With Stress, Local Buckling and System Stability Constraints
,”
Struct. Optim.
,
11
(
3–4
), pp.
213
17
.10.1007/BF01197036
22.
Shafieefar
,
M.
, and
Rezvani
,
A.
,
2007
, “
Mooring Optimization of Floating Platforms Using a Genetic Algorithm
,”
Ocean Eng.
,
34
(
10
), pp.
1413
21
.10.1016/j.oceaneng.2006.10.005
23.
Brommundt
,
M.
,
Krause
,
L.
,
Merz
,
K.
, and
Muskulus
,
M.
,
2012
, “
Mooring System Optimization for Floating Wind Turbines Using Frequency Domain Analysis
,”
Energy Procedia
,
24
, pp.
289
96
.10.1016/j.egypro.2012.06.111
24.
Benassai
,
G.
,
Campanile
,
A.
,
Piscopo
,
V.
, and
Scamardella
,
A.
,
2015
, “
Optimization of Mooring Systems for Floating Offshore Wind Turbines
,”
Coastal Eng. J.
,
57
(
4
), p.
1550021
.10.1142/S0578563415500217
25.
Du Pont
,
B. L.
, and
Cagan
,
J.
,
2012
, “
An Extended Pattern Search Approach to Wind Farm Layout Optimization
,”
ASME J. Mech. Des.
,
134
(
8
), p.
081002
.10.1115/1.4006997
26.
Sharp
,
C.
, and
DuPont
,
B.
,
2016
, “
A Multi-Objective Real-Coded Genetic Algorithm Method for Wave Energy Converter Array Optimization
,”
ASME
Paper No. OMAE2016-54996.10.1115/OMAE2016-54996
27.
Choi
,
Y. J.
,
2007
, “
Reliability Assessment of Foundations for Offshore Mooring Systems Under Extreme Environments
,” Ph.D. thesis,
The University of Texas at Austin
, Austin, TX.
28.
Jonkman
,
J.
,
2010
,
NWTC Design Codes (FAST)
,
National Renewable Energy Laboratory
,
Golden, CO
.
29.
Robertson
,
A.
,
Jonkman
,
J.
, and
Masciola
,
M.
,
2014
,
Definition of the Semisubmersible Floating System for Phase II of OC4
,
National Renewable Energy Laboratory
,
Golden, CO
.
You do not currently have access to this content.