Abstract

Regression models are widely used as data-driven methods for predicting a continuous target variable. From a set of input variables, regression models predict a deterministic point value for the target variable. But the deterministic point value prediction is not always sufficient because a target variable value often varies due to diverse sources of uncertainty. For instance, in the fused deposition modeling process, the inconsistent results of replications are associated with natural randomness, environmental condition, and noisy process parameters. The point value estimation is not sufficient to represent the variability in this kind of scenario. Instead of point estimation, the interval prediction of a target variable is more useful in this application. In this paper, linear optimization-based techniques are proposed to predict conservative confidence intervals for linear and polynomial regression models. Two linear optimization models, one for ordinary least squares (OLS) regression and the other for weighted least squares (WLS) regression, are proposed. The proposed methods are implemented on several datasets, including an experimental fused deposition modeling dataset to demonstrate the effectiveness of the proposed methods. The results show that the proposed method is useful for the fused deposition modeling process where the level of uncertainty or the lack of knowledge of uncertainty sources is high. The proposed method can also be leveraged to the Bayesian neural network (BNN), where the optimization techniques for interval prediction will be nonlinear optimization instead of linear optimization.

References

1.
Lee
,
J.-Y.
,
An
,
J.
, and
Chua
,
C. K.
,
2017
, “
Fundamentals and Applications of 3D Printing for Novel Materials
,”
Appl. Mater. Today
,
7
, pp.
120
133
.10.1016/j.apmt.2017.02.004
2.
Klein
,
G. T.
,
Lu
,
Y.
, and
Wang
,
M. Y.
,
2013
, “
3D Printing and Neurosurgery–Ready for Prime Time?
,”
World Neurosurg.
,
80
(
3–4
), pp.
233
235
.10.1016/j.wneu.2013.07.009
3.
Sargent
,
J. F.
, and
Schwartz
,
R.
,
2019
,
3D Printing: Overview, Impacts, and the Federal Role
,
Congressional Research Service
, Washington, DC.
4.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Uncertainty Quantification and Management in Additive Manufacturing: Current Status, Needs, and Opportunities
,”
Int. J. Adv. Manuf. Technol.
,
93
(
5–8
), pp.
2855
2874
.10.1007/s00170-017-0703-5
5.
Dey
,
A.
, and
Yodo
,
N.
,
2019
, “
A Systematic Survey of FDM Process Parameter Optimization and Their Influence on Part Characteristics
,”
J. Manuf. Mater. Process.
,
3
(
3
), p.
64
.10.3390/jmmp3030064
6.
Rayegani
,
F.
, and
Onwubolu
,
G. C.
,
2014
, “
Fused Deposition Modelling (FDM) Process Parameter Prediction and Optimization Using Group Method for Data Handling (GMDH) and Differential Evolution (DE)
,”
Int. J. Adv. Manuf. Technol.
,
73
(
1–4
), pp.
509
519
.10.1007/s00170-014-5835-2
7.
Liu
,
X.
,
Zhang
,
M.
,
Li
,
S.
,
Si
,
L.
,
Peng
,
J.
, and
Hu
,
Y.
,
2017
, “
Mechanical Property Parametric Appraisal of Fused Deposition Modeling Parts Based on the Gray Taguchi Method
,”
Int. J. Adv. Manuf. Technol.
,
89
(
5–8
), pp.
2387
2397
.10.1007/s00170-016-9263-3
8.
Mohamed
,
O. A.
,
Masood
,
S. H.
, and
Bhowmik
,
J. L.
,
2016
, “
Optimization of Fused Deposition Modeling Process Parameters for Dimensional Accuracy Using I-Optimality Criterion
,”
Measurement
,
81
, pp.
174
196
.10.1016/j.measurement.2015.12.011
9.
Panda
,
S. K.
,
Padhee
,
S.
,
Anoop Kumar
,
S.
, and
Mahapatra
,
S. S.
,
2009
, “
Optimization of Fused Deposition Modelling (FDM) Process Parameters Using Bacterial Foraging Technique
,”
Intell. Inform. Manag.
,
1
(
02
), pp.
89
97
.10.4236/iim.2009.12014
10.
Uz Zaman
,
U. K.
,
Boesch
,
E.
,
Siadat
,
A.
,
Rivette
,
M.
, and
Baqai
,
A. A.
,
2019
, “
Impact of Fused Deposition Modeling (FDM) Process Parameters on Strength of Built Parts Using Taguchi's Design of Experiments
,”
Int. J. Adv. Manuf. Technol.
,
101
(
5–8
), pp.
1215
1226
.10.1007/s00170-018-3014-6
11.
Nancharaiah
,
T.
,
Raju
,
D. R.
, and
Raju
,
V. R.
,
2010
, “
An Experimental Investigation on Surface Quality and Dimensional Accuracy of FDM Components
,”
Int. J. Emerg. Technol.
,
1
(
2
), pp.
106
111
.https://www.researchgate.net/profile/Tata-Nancharaiah-2/publication/267248480_An_experimental_investigation_on_surface_quality_and_dimensional_accuracy_of_FDM_components/links/5c9af7be92851cf0ae9a0180/Anexperimental-investigation-on-surface-quality-and-dimensional-accuracy-of-FDM-components.pdf
12.
Alafaghani
,
A.
,
Qattawi
,
A.
,
Alrawi
,
B.
, and
Guzman
,
A.
,
2017
, “
Experimental Optimization of Fused Deposition Modelling Processing Parameters: A Design-for-Manufacturing Approach
,”
Procedia Manuf.
,
10
, pp.
791
803
.10.1016/j.promfg.2017.07.079
13.
Zhang
,
Y.
, and
Chou
,
K.
,
2008
, “
A Parametric Study of Part Distortions in Fused Deposition Modelling Using Three-Dimensional Finite Element Analysis
,”
Proc. Inst. Mech. Eng., Part B J. Eng. Manuf.
,
222
(
8
), pp.
959
968
.10.1243/09544054JEM990
14.
Peng
,
A.
,
Xiao
,
X.
, and
Yue
,
R.
,
2014
, “
Process Parameter Optimization for Fused Deposition Modeling Using Response Surface Methodology Combined With Fuzzy Inference System
,”
Int. J. Adv. Manuf. Technol.
,
73
(
1–4
), pp.
87
100
.10.1007/s00170-014-5796-5
15.
Dey
,
A.
,
Hoffman
,
D.
, and
Yodo
,
N.
,
2020
, “
Optimizing Multiple Process Parameters in Fused Deposition Modeling With Particle Swarm Optimization
,”
Int. J. Interact. Des. Manuf. (IJIDeM)
,
14
(
2
), pp.
393
405
.10.1007/s12008-019-00637-9
16.
Srivastava
,
M.
,
Rathee
,
S.
,
Maheshwari
,
S.
, and
Kundra
,
T.
,
2018
, “
Multi-Objective Optimisation of Fused Deposition Modelling Process Parameters Using RSM and Fuzzy Logic for Build Time and Support Material
,”
Int. J. Rapid Manuf.
,
7
(
1
), pp.
25
42
.10.1504/IJRAPIDM.2018.089727
17.
Deswal
,
S.
,
Narang
,
R.
, and
Chhabra
,
D.
,
2019
, “
Modeling and Parametric Optimization of FDM 3D Printing Process Using Hybrid Techniques for Enhancing Dimensional Preciseness
,”
Int. J. Interact. Des. Manuf. (IJIDeM)
,
13
(
3
), pp.
1197
1214
.10.1007/s12008-019-00536-z
18.
Papon
,
E. A.
,
Mulani
,
S. B.
, and
Haque
,
A.
,
2018
, “
Optimization and Polynomial Chaos-Based Uncertainty Analysis of Additively Manufactured Polymer Composites
,”
Proceedings of the American Society for Composites 33rd Technical Conference
, Seattle, Washington, DC, Sept. 24–26.10.12783/asc33/25945
19.
Sykes
,
A. O.
,
1993
,
An Introduction to Regression Analysis
,
Coase-Sandor Working Paper
,
Chicago, IL
.
20.
Baturynska
,
I.
,
2018
, “
Statistical Analysis of Dimensional Accuracy in Additive Manufacturing Considering STL Model Properties
,”
Int. J. Adv. Manuf. Technol.
,
97
(
5–8
), pp.
2835
2849
.10.1007/s00170-018-2117-4
21.
Chiarini
,
A.
, and
Brunetti
,
F.
,
2019
, “
What Really Matters for a Successful Implementation of Lean Production? A Multiple Linear Regression Model Based on European Manufacturing Companies
,”
Prod. Plann. Control
,
30
(
13
), pp.
1091
1101
.10.1080/09537287.2019.1589010
22.
Sidey-Gibbons
,
J. A.
, and
Sidey-Gibbons
,
C. J.
,
2019
, “
Machine Learning in Medicine: A Practical Introduction
,”
BMC Med. Res. Methodol.
,
19
(
1
), pp.
1
18
.10.1186/s12874-019-0681-4
23.
Kumaran
,
S. T.
,
Ko
,
T. J.
,
Uthayakumar
,
M.
, and
Islam
,
M. M.
,
2017
, “
Prediction of Surface Roughness in Abrasive Water Jet Machining of CFRP Composites Using Regression Analysis
,”
J. Alloys Compd.
,
724
, pp.
1037
1045
.10.1016/j.jallcom.2017.07.108
24.
Anand
,
G.
,
Alagumurthi
,
N.
,
Elansezhian
,
R.
,
Palanikumar
,
K.
, and
Venkateshwaran
,
N.
,
2018
, “
Investigation of Drilling Parameters on Hybrid Polymer Composites Using Grey Relational Analysis, Regression, Fuzzy Logic, and ANN Models
,”
J. Braz. Soc. Mech. Sci. Eng.
,
40
(
4
), pp.
1
20
.10.1007/s40430-018-1137-1
25.
Mumtaz
,
U.
,
Ali
,
Y.
, and
Petrillo
,
A.
,
2018
, “
A Linear Regression Approach to Evaluate the Green Supply Chain Management Impact on Industrial Organizational Performance
,”
Sci. Total Environ.
,
624
, pp.
162
169
.10.1016/j.scitotenv.2017.12.089
26.
Huang
,
P.-Y.
,
Lin
,
W.-C.
,
Chiu
,
B. Y.-C.
,
Chang
,
H.-H.
, and
Lin
,
K.-P.
,
2013
, “
Regression Analysis of Radial Artery Pulse Palpation as a Potential Tool for Traditional Chinese Medicine Training Education
,”
Complem. Ther. Med.
,
21
(
6
), pp.
649
659
.10.1016/j.ctim.2013.08.011
27.
Wei
,
D.
,
Xing
,
M.
,
Zhang
,
J.
,
Zhang
,
C.
, and
Cao
,
H.
,
2018
, “
Applied Research of Multiple Linear Regression in the Information Quantification of Chinese Medicine Bone-Setting Manipulation
,” IEEE International Conference on Bioinformatics and Biomedicine (
BIBM
), Madrid, Spain, Dec. 3–6, pp.
1912
1916
.10.1109/BIBM.2018.8621086
28.
Yang
,
Y.
, “
Prediction and Analysis of Aero-Material Consumption Based on Multivariate Linear Regression Model
,”
IEEE Third International Conference on Cloud Computing and Big Data Analysis (ICCCBDA)
, Chengdu, China, Apr. 20–22, pp.
628
632
.10.1109/ICCCBDA.2018.8386591
29.
Tundura
,
L.
, and
Wanyoike
,
D.
,
2016
, “
Effect of Inventory Control Strategies on Inventory Record Accuracy in Kenya Power Company, Nakuru
,”
J. Invest. Manage.
,
5
(
5
), pp.
82
92
.10.11648/j.jim.20160505.16
30.
Li
,
X.
,
Xu
,
H.
,
Chen
,
X.
, and
Li
,
C.
,
2013
, “
Potential of NPP-VIIRS Nighttime Light Imagery for Modeling the Regional Economy of China
,”
Remote Sensing
,
5
(
6
), pp.
3057
3081
.10.3390/rs5063057
31.
Becker-Reshef
,
I.
,
Vermote
,
E.
,
Lindeman
,
M.
, and
Justice
,
C.
,
2010
, “
A Generalized Regression-Based Model for Forecasting Winter Wheat Yields in Kansas and Ukraine Using MODIS Data
,”
Remote Sensing Environ.
,
114
(
6
), pp.
1312
1323
.10.1016/j.rse.2010.01.010
32.
Jarque
,
C. M.
, and
Bera
,
A. K.
,
1980
, “
Efficient Tests for Normality, Homoscedasticity and Serial Independence of Regression Residuals
,”
Econ. Lett.
,
6
(
3
), pp.
255
259
.10.1016/0165-1765(80)90024-5
33.
Mohamed
,
O. A.
,
Masood
,
S. H.
, and
Bhowmik
,
J. L.
,
2015
, “
Optimization of Fused Deposition Modeling Process Parameters: A Review of Current Research and Future Prospects
,”
Adv. Manuf.
,
3
(
1
), pp.
42
53
.10.1007/s40436-014-0097-7
34.
Popescu
,
D.
,
Zapciu
,
A.
,
Amza
,
C.
,
Baciu
,
F.
, and
Marinescu
,
R.
,
2018
, “
FDM Process Parameters Influence Over the Mechanical Properties of Polymer Specimens: A Review
,”
Polym. Test.
,
69
, pp.
157
166
.10.1016/j.polymertesting.2018.05.020
35.
Oberkampf
,
W. L.
,
Helton
,
J. C.
,
Joslyn
,
C. A.
,
Wojtkiewicz
,
S. F.
, and
Ferson
,
S.
,
2004
, “
Challenge Problems: Uncertainty in System Response Given Uncertain Parameters
,”
Reliab. Eng. Syst. Saf.
,
85
(
1–3
), pp.
11
19
.10.1016/j.ress.2004.03.002
36.
Dey
,
A.
, and
Zaman
,
K.
,
2020
, “
A Robust Optimization Approach for Solving Two-Person Games Under Interval Uncertainty
,”
Comput. Oper. Res.
,
119
, p.
104937
.10.1016/j.cor.2020.104937
37.
Stine
,
R. A.
,
1985
, “
Bootstrap Prediction Intervals for Regression
,”
J. Am. Stat. Assoc.
,
80
(
392
), pp.
1026
1031
.10.1080/01621459.1985.10478220
38.
Shrestha
,
D. L.
, and
Solomatine
,
D. P.
,
2006
, “
Machine Learning Approaches for Estimation of Prediction Interval for the Model Output
,”
Neural Networks
,
19
(
2
), pp.
225
235
.10.1016/j.neunet.2006.01.012
39.
Olive
,
D. J.
,
2007
, “
Prediction Intervals for Regression Models
,”
Comput. Stat. Data Anal.
,
51
(
6
), pp.
3115
3122
.10.1016/j.csda.2006.02.006
40.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2015
,
Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing
,
Springer
,
New York
.
41.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Uncertainty Quantification in Prediction of Material Properties During Additive Manufacturing
,”
Scr. Mater.
,
135
, pp.
135
140
.10.1016/j.scriptamat.2016.10.014
42.
Wickramasinghe
,
S.
,
Do
,
T.
, and
Tran
,
P.
,
2020
, “
FDM-Based 3D Printing of Polymer and Associated Composite: A Review on Mechanical Properties, Defects and Treatments
,”
Polymer
,
12
(
7
), p.
1529
.10.3390/polym12071529
43.
Günaydın
,
K.
, and
Türkmen
,
H. S.
,
2018
, “
Common FDM 3D Printing Defects
,”
International Congress on 3D Printing (Additive Manufacturing) Technologies and Digital Industry
, Antalya, Turkey, Apr. 19–21, p. 195.
44.
Mwema
,
F. M.
, and
Akinlabi
,
E. T.
,
2020
,
Fused Deposition Modeling: Strategies for Quality Enhancement
,
Springer Nature
, Switzerland.
45.
Valerga
,
A.
,
Batista
,
M.
,
Salguero
,
J.
, and
Girot
,
F.
,
2018
, “
Influence of PLA Filament Conditions on Characteristics of FDM Parts
,”
Materials
,
11
(
8
), p.
1322
.10.3390/ma11081322
46.
Song
,
R.
,
Clemon
,
L.
, and
Telenko
,
C.
,
2019
, “
Uncertainty and Variability of Energy and Material Use by Fused Deposition Modeling Printers in Makerspaces
,”
J. Ind. Ecol.
,
23
(
3
), pp.
699
708
.10.1111/jiec.12772
47.
Choi
,
S.-K.
,
Gorguluarslan
,
R. M.
,
Park
,
S.-I.
,
Stone
,
T.
,
Moon
,
J. K.
, and
Rosen
,
D. W.
,
2015
, “
Simulation-Based Uncertainty Quantification for Additively Manufactured Cellular Structures
,”
J. Electron. Mater.
,
44
(
10
), pp.
4035
4041
.10.1007/s11664-015-3841-2
48.
Gorguluarslan
,
R. M.
,
Park
,
S.-I.
,
Rosen
,
D. W.
, and
Choi
,
S.-K.
,
2015
, “
A Multilevel Upscaling Method for Material Characterization of Additively Manufactured Part Under Uncertainties
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111408
.10.1115/1.4031012
49.
James
,
G.
,
Witten
,
D.
,
Hastie
,
T.
, and
Tibshirani
,
R.
,
2013
,
An Introduction to Statistical Learning
,
Springer
,
New York
.
50.
Friedman
,
J.
,
Hastie
,
T.
, and
Tibshirani
,
R.
,
2001
,
The Elements of Statistical Learning
,
Springer Series in Statistics
,
New York
.
51.
Haldar
,
A.
, and
Mahadevan
,
S.
,
2000
,
Probability, Reliability, and Statistical Methods in Engineering Design
,
John Wiley & Sons
,
New York
.
52.
Raney
,
K.
,
Lani
,
E.
, and
Kalla
,
D. K.
,
2017
, “
Experimental Characterization of the Tensile Strength of ABS Parts Manufactured by Fused Deposition Modeling Process
,”
Mater. Today: Proc.
,
4
(
8
), pp.
7956
7961
.10.1016/j.matpr.2017.07.132
53.
Nidagundi
,
V. B.
,
Keshavamurthy
,
R.
, and
Prakash
,
C.
,
2015
, “
Studies on Parametric Optimization for Fused Deposition Modelling Process
,”
Mater. Today: Proc.
,
2
(
4–5
), pp.
1691
1699
.10.1016/j.matpr.2015.07.097
54.
ASTM International
,
2015
,
Standard Test Method for Compressive Properties of Rigid Plastics
,
ASTM International
,
PA
, Standard No. ASTM D695-15.
55.
Pandey
,
P. M.
,
Thrimurthulu
,
K.
, and
Reddy
,
N. V.
,
2004
, “
Optimal Part Deposition Orientation in FDM by Using a Multicriteria Genetic Algorithm
,”
Int. J. Prod. Res.
,
42
(
19
), pp.
4069
4089
.10.1080/00207540410001708470
56.
Gurrala
,
P. K.
, and
Regalla
,
S. P.
,
2014
, “
Multi-Objective Optimisation of Strength and Volumetric Shrinkage of FDM Parts: A Multi-Objective Optimization Scheme is Used to Optimize the Strength and Volumetric Shrinkage of FDM Parts Considering Different Process Parameters
,”
Virtual Phys. Prototyping
,
9
(
2
), pp.
127
138
.10.1080/17452759.2014.898851
You do not currently have access to this content.