Abstract

Laser powder bed fusion (LPBF) process is one of popular additive manufacturing techniques for building metal parts through the layer-by-layer melting and solidification process. To date, there are plenty of successful product prototypes manufactured by the LPBF process. However, the lack of confidence in its quality and long-term reliability could be one of the major reasons prevent the LPBF process from being widely adopted in industry. The existing LPBF process is an open loop control system with some in situ monitoring capability. Hence, manufacturing quality and long-term reliability of the part cannot be guaranteed if there is any disturbance during the process. Such limitation can be overcome if a feedback control system can be implemented. This article studies the control effectiveness of the proportional-integral-derivative (PID) control and the model predictive control (MPC) for the LPBF process based on a physics-based machine learning model. The control objective is to maintain the melt pool width and depth at required level under process uncertainties from the powder and laser. A sampling-based dynamic control window approach is further proposed for MPC as a practical approach to approximate the optimal control actions within limited time constraint. Control effectiveness, pros, and cons of the PID control and the MPC for the LPBF process are investigated and compared through various control scenarios. It is demonstrated that the MPC is more effective than the PID control under the same conditions, but the MPC demands a valid digit twin of the LPBF process.

References

1.
Van Elsen
,
M.
,
Baelmans
,
M.
,
Mercelis
,
P.
, and
Kruth
,
J.
,
2007
, “
Solutions for Modelling Moving Heat Sources in a Semi-Infinite Medium and Applications to Laser Material Processing
,”
Int. J. Heat Mass Transfer
,
50
(
23–24
), pp.
4872
4882
.10.1016/j.ijheatmasstransfer.2007.02.044
2.
Kamath
,
C.
,
El-Dasher
,
B.
,
Gallegos
,
G. F.
,
King
,
W. E.
, and
Sisto
,
A.
,
2014
, “
Density of Additively-Manufactured, 316 L SS Parts Using Laser Powder-Bed Fusion at Powers Up to 400 W
,”
Int. J. Adv. Manuf. Technol.
,
74
(
1–4
), pp.
65
78
.10.1007/s00170-014-5954-9
3.
Gong
,
H.
,
Rafi
,
K.
,
Gu
,
H.
,
Starr
,
T.
, and
Stucker
,
B.
,
2014
, “
Analysis of Defect Generation in Ti-6Al-4V Parts Made Using Powder Bed Fusion Additive Manufacturing Processes
,”
Addit. Manuf.
,
1
, pp.
87
98
.https://doi.org/10.1016/j.addma.2014.08.002
4.
Jamshidinia
,
M.
,
Sadek
,
A.
,
Wang
,
W.
, and
Kelly
,
S.
,
2015
, “
Additive ManufacturingOf Steel Alloys Using Laser Powder-Bed Fusion
,”
Adv. Mater. Process.
,
173
(
1
), pp.
20
24
.https://www.asminternational.org/documents/10192/23429018/amp17301p20.pdf
5.
Schmelzle
,
J.
,
Kline
,
E. V.
,
Dickman
,
C. J.
,
Reutzel
,
E. W.
,
Jones
,
G.
, and
Simpson
,
T. W.
,
2015
, “(
Re)Designing for Part Consolidation: Understanding the Challenges of Metal Additive Manufacturing
,”
ASME J. Mech. Des.
,
137
(
11
), p. 111404.10.1115/1.4031156
6.
Slotwinski
,
J. A.
,
Garboczi
,
E. J.
,
Stutzman
,
P. E.
,
Ferraris
,
C. F.
,
Watson
,
S. S.
, and
Peltz
,
M. A.
,
2014
, “
Characterization of Metal Powders Used for Additive Manufacturing
,”
J. Res. Natl. Inst. Stand. Technol.
,
119
, pp.
460
493
.10.6028/jres.119.018
7.
Palanivel
,
S.
,
Dutt
,
A. K.
,
Faierson
,
E. J.
, and
Mishra
,
R. S.
,
2016
, “
Spatially Dependent Properties in a Laser Additive Manufactured Ti-6Al-4V Component
,”
Mater. Sci. Eng. A
,
654
, pp.
39
52
.10.1016/j.msea.2015.12.021
8.
Böckin
,
D.
, and
Tillman
,
A.
,
2019
, “
Environmental Assessment of Additive Manufacturing in the Automotive Industry
,”
J. Clean. Prod.
,
226
, pp.
977
987
.10.1016/j.jclepro.2019.04.086
9.
Yadroitsev
,
I.
,
Krakhmalev
,
P.
,
Yadroitsava
,
I.
, and
Du Plessis
,
A.
,
2018
, “
Qualification of Ti6Al4V ELI Alloy Produced by Laser Powder Bed Fusion for Biomedical Applications
,”
JOM
,
70
(
3
), pp.
372
377
.10.1007/s11837-017-2655-5
10.
Huang
,
S.
,
Sing
,
S. L.
,
de Looze
,
G.
,
Wilson
,
R.
, and
Yeong
,
W. Y.
,
2020
, “
Laser Powder Bed Fusion of Titanium-Tantalum Alloys: Compositions and Designs for Biomedical Applications
,”
J. Mech. Behav. Biomed. Mater.
,
108
, p.
103775
.10.1016/j.jmbbm.2020.103775
11.
King
,
W. E.
,
Anderson
,
A. T.
,
Ferencz
,
R. M.
,
Hodge
,
N. E.
,
Kamath
,
C.
,
Khairallah
,
S. A.
, and
Rubenchik
,
A. M.
,
2015
, “
Laser Powder-Bed Fusion Additive Manufacturing of Metals; Physics, Computational, and Materials Challenges
,”
Appl. Phys. Rev.
,
2
, p.
041304
.10.1063/1.4937809
12.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Uncertainty Quantification and Management in Additive Manufacturing: Current Status, Needs, and Opportunities
,”
Int. J. Adv. Manuf. Technol.
,
93
(
5–8
), pp.
2855
2874
.10.1007/s00170-017-0703-5
13.
Boley
,
C. D.
,
Khairallah
,
S. A.
, and
Rubenchik
,
A. M.
,
2015
, “
Calculation of Laser Absorption by Metal Powders in Additive Manufacturing
,”
Appl. Opt.
,
54
(
9
), pp.
2477
2482
.10.1364/AO.54.002477
14.
Lee
,
Y. S.
, and
Zhang
,
W.
,
2016
, “
Modeling of Heat Transfer, Fluid Flow and Solidification Microstructure of Nickel-Base Superalloy Fabricated by Laser Powder Bed Fusion
,”
Addit. Manuf.
,
12
, pp.
178
188
.10.1016/j.addma.2016.05.003
15.
Heeling
,
T.
,
Cloots
,
M.
, and
Wegener
,
K.
,
2017
, “
Melt Pool Simulation for the Evaluation of Process Parameters in Selective Laser Melting
,”
Addit. Manuf.
,
14
, pp.
116
125
.10.1016/j.addma.2017.02.003
16.
Zhang
,
Z.
,
Huang
,
Y.
,
Rani Kasinathan
,
A.
,
Imani Shahabad
,
S.
,
Ali
,
U.
,
Mahmoodkhani
,
Y.
, and
Toyserkani
,
E.
,
2019
, “
3-Dimensional Heat Transfer Modeling for Laser Powder-Bed Fusion Additive Manufacturing With Volumetric Heat Sources Based on Varied Thermal Conductivity and Absorptivity
,”
Opt. Laser Technol.
,
109
, pp.
297
312
.10.1016/j.optlastec.2018.08.012
17.
Russell
,
M. A.
,
Souto-Iglesias
,
A.
, and
Zohdi
,
T. I.
,
2018
, “
Numerical Simulation of Laser Fusion Additive Manufacturing Processes Using the SPH Method
,”
Comput. Methods Appl. Mech. Eng.
,
341
, pp.
163
187
.10.1016/j.cma.2018.06.033
18.
Masoomi
,
M.
,
Thompson
,
S. M.
, and
Shamsaei
,
N.
,
2017
, “
Laser Powder Bed Fusion of Ti-6Al-4V Parts: Thermal Modeling and Mechanical Implications
,”
Int. J. Mach. Tools Manuf.
,
118–119
, pp.
73
90
.10.1016/j.ijmachtools.2017.04.007
19.
Robinson
,
J.
,
Ashton
,
I.
,
Fox
,
P.
,
Jones
,
E.
, and
Sutcliffe
,
C.
,
2018
, “
Determination of the Effect of Scan Strategy on Residual Stress in Laser Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
23
, pp.
13
24
.10.1016/j.addma.2018.07.001
20.
Ganeriwala
,
R. K.
,
Strantza
,
M.
,
King
,
W. E.
,
Clausen
,
B.
,
Phan
,
T. Q.
,
Levine
,
L. E.
,
Brown
,
D. W.
, and
Hodge
,
N. E.
,
2019
, “
Evaluation of a Thermomechanical Model for Prediction of Residual Stress During Laser Powder Bed Fusion of Ti-6Al-4V
,”
Addit. Manuf.
,
27
, pp.
489
502
.10.1016/j.addma.2019.03.034
21.
Chen
,
Q.
,
Liang
,
X.
,
Hayduke
,
D.
,
Liu
,
J.
,
Cheng
,
L.
,
Oskin
,
J.
,
Whitmore
,
R.
, and
To
,
A. C.
,
2019
, “
An Inherent Strain Based Multiscale Modeling Framework for Simulating Part-Scale Residual Deformation for Direct Metal Laser Sintering
,”
Addit. Manuf.
,
28
, pp.
406
418
.10.1016/j.addma.2019.05.021
22.
Williams
,
R. J.
,
Davies
,
C. M.
, and
Hooper
,
P. A.
,
2018
, “
A Pragmatic Part Scale Model for Residual Stress and Distortion Prediction in Powder Bed Fusion
,”
Addit. Manuf.
,
22
, pp.
416
425
.10.1016/j.addma.2018.05.038
23.
Zhang
,
Y.
,
Chen
,
Q.
,
Guillemot
,
G.
,
Gandin
,
C.
, and
Bellet
,
M.
,
2018
, “
Numerical Modelling of Fluid and Solid Thermomechanics in Additive Manufacturing by Powder-Bed Fusion: Continuum and Level Set Formulation Applied to Track- and Part-Scale Simulations
,”
C. R. Mec.
,
346
(
11
), pp.
1055
1071
.10.1016/j.crme.2018.08.008
24.
Olleak
,
A.
, and
Xi
,
Z.
,
2020
, “
Scan-Wise Adaptive Remeshing for Efficient LPBF Process Simulation: The Thermal Problem
,”
Manuf. Lett.
,
23
, pp.
75
78
.10.1016/j.mfglet.2020.01.003
25.
Olleak
,
A.
, and
Xi
,
Z.
,
2020
, “
A Scan-Wise Adaptive Remeshing Framework for Thermal Simulation of the Selective Laser Melting Process
,”
Int. J. Adv. Manuf. Technol.
,
107
(
1–2
), pp.
573
584
.10.1007/s00170-020-04995-7
26.
Olleak
,
A.
, and
Xi
,
Z.
,
2020
, “
Efficient LPBF Process Simulation Using Finite Element Modeling With Adaptive Remeshing for Distortions and Residual Stresses Prediction
,”
Manuf. Lett.
,
24
, pp.
140
144
.10.1016/j.mfglet.2020.05.002
27.
Khan
,
K.
,
Mohr
,
G.
,
Hilgenberg
,
K.
, and
De
,
A.
,
2020
, “
Probing a Novel Heat Source Model and Adaptive Remeshing Technique to Simulate Laser Powder Bed Fusion With Experimental Validation
,”
Comput. Mater. Sci.
,
181
, p.
109752
.10.1016/j.commatsci.2020.109752
28.
Olleak
,
A.
, and
Xi
,
Z.
,
2020
, “
Part-Scale Finite Element Modeling of the Selective Laser Melting Process With Layer-Wise Adaptive Remeshing for Thermal History and Porosity Prediction
,”
ASME J. Manuf. Sci. Eng.
,
142
(
12
), p.
121006
.10.1115/1.4047733
29.
Scime
,
L.
, and
Beuth
,
J.
,
2018
, “
Anomaly Detection and Classification in a Laser Powder Bed Additive Manufacturing Process Using a Trained Computer Vision Algorithm
,”
Addit. Manuf.
,
19
, pp.
114
126
.10.1016/j.addma.2017.11.009
30.
Khanzadeh
,
M.
,
Chowdhury
,
S.
,
Marufuzzaman
,
M.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2018
, “
Porosity Prediction: Supervised-Learning of Thermal History for Direct Laser Deposition
,”
J. Manuf. Syst.
,
47
, pp.
69
82
.10.1016/j.jmsy.2018.04.001
31.
Imani
,
F.
,
Gaikwad
,
A.
,
Montazeri
,
M.
,
Rao
,
P.
,
Yang
,
H.
, and
Reutzel
,
E.
,
2018
, “
Process Mapping and in-Process Monitoring of Porosity in Laser Powder Bed Fusion Using Layerwise Optical Imaging
,”
ASME J. Manuf. Sci. Eng.
, ,
140
(
10
), p.
101009
.10.1115/1.4040615
32.
Baumgartl
,
H.
,
Tomas
,
J.
,
Buettner
,
R.
, and
Merkel
,
M.
,
2020
, “
A Deep Learning-Based Model for Defect Detection in Laser-Powder Bed Fusion Using in-Situ Thermographic Monitoring
,”
Prog. Addit. Manuf.
,
5
(
3
), pp.
277
285
.10.1007/s40964-019-00108-3
33.
Paulson
,
N. H.
,
Gould
,
B.
,
Wolff
,
S. J.
,
Stan
,
M.
, and
Greco
,
A. C.
,
2020
, “
Correlations Between Thermal History and Keyhole Porosity in Laser Powder Bed Fusion
,”
Addit. Manuf.
,
34
, p.
101213
.10.1016/j.addma.2020.101213
34.
Olleak
,
A.
, and
Xi
,
Z.
,
2020
, “
Calibration and Validation Framework for Selective Laser Melting Process Based on Multi-Fidelity Models and Limited Experiment Data
,”
ASME J. Mech. Des.
, ,
142
(
8
), p.
081701
.10.1115/1.4045744
35.
Mayne
,
D. Q.
,
Rawlings
,
J. B.
,
Rao
,
C. V.
, and
Scokaert
,
P. O. M.
,
2000
, “
Constrained Model Predictive Control: Stability and Optimality
,”
Automatica
,
36
(
6
), pp.
789
814
.10.1016/S0005-1098(99)00214-9
36.
Qin
,
S. J.
, and
Badgwell
,
T. A.
,
2003
, “
A Survey of Industrial Model Predictive Control Technology
,”
Control Eng. Pract.
,
11
(
7
), pp.
733
764
.10.1016/S0967-0661(02)00186-7
37.
Ji
,
J.
,
Khajepour
,
A.
,
Melek
,
W. W.
, Sr.
, and
Huang
,
Y.
,
2017
, “
Path Planning and Tracking for Vehicle Collision Avoidance Based on Model Predictive Control With Multiconstraints
,”
IEEE Trans. Veh. Technol.
,
66
(
2
), pp.
952
964
.10.1109/TVT.2016.2555853
38.
Vazquez
,
S.
,
Rodriguez
,
J.
,
Rivera
,
M.
,
Franquelo
,
L. G.
, and
Norambuena
,
M.
,
2017
, “
Model Predictive Control for Power Converters and Drives: Advances and Trends
,”
IEEE Trans. Ind. Electron.
,
64
(
2
), pp.
935
947
.10.1109/TIE.2016.2625238
39.
Ding
,
D.
,
Han
,
Q.
,
Wang
,
Z.
, and
Ge
,
X.
,
2019
, “
A Survey on Model-Based Distributed Control and Filtering for Industrial Cyber-Physical Systems
,”
IEEE Trans. Ind. Inf.
,
15
(
5
), pp.
2483
2499
.10.1109/TII.2019.2905295
40.
Mayne
,
D. Q.
,
2014
, “
Model Predictive Control: Recent Developments and Future Promise
,”
Automatica
,
50
(
12
), pp.
2967
2986
.10.1016/j.automatica.2014.10.128
41.
Youn
,
B. D.
,
Jung
,
B. C.
,
Xi
,
Z.
,
Kim
,
S. B.
, and
Lee
,
W. R.
,
2011
, “
A Hierarchical Framework for Statistical Model Calibration in Engineering Product Development
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
13–16
), pp.
1421
1431
.10.1016/j.cma.2010.12.012
42.
Xi
,
Z.
,
2019
, “
Model-Based Reliability Analysis With Both Model Uncertainty and Parameter Uncertainty
,”
ASME J. Mech. Des.
,
141
(
5
), p.
051404
.10.1115/1.4041946
43.
Jiang
,
C.
,
Hu
,
Z.
,
Liu
,
Y.
,
Mourelatos
,
Z. P.
,
Gorsich
,
D.
, and
Jayakumar
,
P.
,
2020
, “
A Sequential Calibration and Validation Framework for Model Uncertainty Quantification and Reduction
,”
Comput. Methods Appl. Mech. Eng.
,
368
, p.
113172
.10.1016/j.cma.2020.113172
44.
Xiong
,
Y.
,
Chen
,
W.
,
Tsui
,
K.
, and
Apley
,
D. W.
,
2009
, “
A Better Understanding of Model Updating Strategies in Validating Engineering Models
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
15–16
), pp.
1327
1337
.10.1016/j.cma.2008.11.023
45.
Xi
,
Z.
,
Pan
,
H.
,
Fu
,
Y.
, and
Yang
,
R.
,
2015
, “
Validation Metric for Dynamic System Responses Under Uncertainty
,”
SAE Int. J. Mater. Manuf.
,
8
(
2
), pp.
309
314
.10.4271/2015-01-0453
46.
Rubenchik
,
A.
,
Wu
,
S.
,
Mitchell
,
S.
,
Golosker
,
I.
,
LeBlanc
,
M.
, and
Peterson
,
N.
,
2015
, “
Direct Measurements of Temperature-Dependent Laser Absorptivity of Metal Powders
,”
Appl. Opt.
,
54
(
24
), pp.
7230
7233
.10.1364/AO.54.007230
47.
Dilip
,
J. J. S.
,
Zhang
,
S.
,
Teng
,
C.
,
Zeng
,
K.
,
Robinson
,
C.
,
Pal
,
D.
, and
Stucker
,
B.
,
2017
, “
Influence of Processing Parameters on the Evolution of Melt Pool, Porosity, and Microstructures in Ti-6Al-4V Alloy Parts Fabricated by Selective Laser Melting
,”
Prog. Addit. Manuf.
,
2
(
3
), pp.
157
167
.10.1007/s40964-017-0030-2
You do not currently have access to this content.