Abstract

Additive manufacturing (AM) has been extensively investigated in recent years to explore its application in a wide range of engineering functionalities, such as mechanical, acoustic, thermal, and electrical properties. A data-driven approach is proposed to investigate the influence of major fabrication parameters in the laser-based additively manufactured Ti–6Al–4V. Two separate laser-based powder bed fusion techniques, i.e., selective laser melting (SLM) and direct metal laser sintering (DMLS), have been investigated and several data regarding the tensile properties of Ti–6Al–4V alloy with their corresponding fabrication parameters are collected from open literature. Statistical data analysis is performed for four fabrication parameters (scanning speed, laser power, hatch spacing, and powder layer thickness) and three postfabrication parameters (heating temperature, heating time, and hot isostatically pressed or not) which are major influencing factors and have been investigated by several researchers to identify their behavior on the static mechanical properties (i.e., yielding strength, ultimate tensile strength, and elongation). To identify the behavior of the relationship between the input and output parameters, both linear regression analysis and artificial neural network (ANN) models are developed using 53 and 100 datasets for SLM and DMLS processes, respectively. The linear regression model resulted in an average R squared value of 0.351 and 0.507 compared to 0.908 and 0.833 in the case of nonlinear ANN modeling for SLM and DMLS based modeling, respectively. Both local and global sensitivity analyses are carried out to identify the important factors for future optimal design. Based on the current study, local sensitivity analysis (SA) suggests that SLM is most sensitive to laser power, scanning speed, and heat treatment temperature while DMLS is most sensitive to heat treatment temperature, hatch spacing, and laser power. In the case of DMLS fabricated Ti–6Al–4V alloy, laser power, and scan speed are found to be the most impactful input parameters for tensile properties of the alloy while heating time turned out to be the least affecting parameter. The global sensitivity analysis results can be used to tailor the alloy's static properties as per the requirement while results from local sensitivity analysis could be useful to optimize the already tailored design properties. Sobol's global sensitivity analysis implicates laser power, heating temperature, and hatch spacing to be the most influential parameters for alloy strength while powder layer thickness followed by scanning speed to be the prominent parameters for elongation for SLM fabricated Ti–6Al–4V alloy. Future work would still be needed to eradicate some of the limitations of this study related to limited dataset availability.

References

1.
Rosochowski
,
A.
, and
Matuszak
,
A.
,
2000
, “
Rapid Tooling: The State of the Art
,”
J. Mater. Process. Technol.
,
106
(
1–3
), pp.
191
198
.10.1016/S0924-0136(00)00613-0
2.
Hague
,
R.
,
Mansour
,
S.
,
Saleh
,
N.
, and
Harris
,
R.
,
2004
, “
Materials Analysis of Stereolithography Resins for Use in Rapid Manufacturing
,”
J. Mater. Sci.
,
39
(
7
), pp.
2457
2464
.10.1023/B:JMSC.0000020010.73768.4a
3.
Sing
,
S. L.
,
An
,
J.
,
Yeong
,
W. Y.
, and
Wiria
,
F. E.
,
2016
, “
Laser and Electron-Beam Powder-Bed Additive Manufacturing of Metallic Implants: A Review on Processes, Materials and Designs
,”
J. Orthop. Res.
,
34
(
3
), pp.
369
385
.10.1002/jor.23075
4.
Levy
,
G. N.
,
Schindel
,
R.
, and
Kruth
,
J. P.
,
2003
, “
Rapid Manufacturing and Rapid Tooling With Layer Manufacturing (LM) Technologies, State of the Art and Future Perspectives
,”
CIRP Ann. - Manuf. Technol.
,
52
(
2
), pp.
589
609
.10.1016/S0007-8506(07)60206-6
5.
Tapia
,
G.
, and
Elwany
,
A.
,
2014
, “
A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p. 060801.10.1115/1.4028540
6.
Gibson
,
I.
,
Rosen
,
D. W.
, and Stucker, B.,
2019
,
Additive Manufacturing Technologies
,
Springer
, New York.
7.
Kumar
,
S.
,
2003
, “
Selective Laser Sintering: A Qualitative and Objective Approach
,”
JOM
,
55
(
10
), pp.
43
47
.10.1007/s11837-003-0175-y
8.
Wang
,
X.
, and
Laoui
,
T.
,
2006
, “
Lasers and Materials in Selective Laser Sintering
,”
Assem. Autom.,
23
(
4
), pp.
357
371
.
9.
Roberto
,
A.
, and
Bineli
,
R.
,
2011
, “
Direct Metal Laser Sintering (DMLS): Technology for Design and Construction of Microreactors
,”
6th Brazilian Conference on Manufacturing Engineering
, Caxias do Sul, RS, Brazil, Apr.
11
15
.https://docplayer.net/48458772-Direct-metal-laser-sintering-dmls-technology-fordesign-and-construction-of-microreactors.html
10.
Yap
,
C. Y.
,
Chua
,
C. K.
,
Dong
,
Z. L.
,
Liu
,
Z. H.
,
Zhang
,
D. Q.
,
Loh
,
L. E.
, and
Sing
,
S. L.
,
2015
, “
Review of Selective Laser Melting: Materials and Applications
,”
Appl. Phys. Rev.
,
2
(
4
), p.
041101
.10.1063/1.4935926
11.
Zhang
,
L. C.
,
Liu
,
Y.
,
Li
,
S.
, and
Hao
,
Y.
,
2018
, “
Additive Manufacturing of Titanium Alloys by Electron Beam Melting: A Review
,”
Adv. Eng. Mater.
,
20
(
5
), p.
1700842
.10.1002/adem.201700842
12.
Atwood
,
C.
,
Griffith
,
M.
,
Harwell
,
L.
,
Schlienger
,
E.
,
Ensz
,
M.
,
Smugeresky
,
J.
,
Romero
,
T.
,
Greene
,
D.
, and
Reckaway
,
D.
,
2018
, “
Laser Engineered Net Shaping (LENSTM): A Tool for Direct Fabrication of Metal Parts
,”
International Congr. Appl. Lasers Electro-Optics,
1
(
1998
), pp.
E1
E7
.10.2351/1.5059147
13.
Dutta
,
B.
,
Palaniswamy
,
S.
,
Choi
,
J.
,
Song
,
L. J.
, and
Mazumder
,
J.
,
2011
, “
Additive Manufacturing by Direct Metal Deposition
,”
Adv. Mater. Process
,
169
(
5
), pp.
33
36
.https://www.asminternational.org/documents/10192/1895560/amp16905p33.pdf/d5669e78-19ec-4fbd-b1ab-90298c62a0c7
14.
Rodrigues
,
T. A.
,
Duarte
,
V.
,
Miranda
,
R. M.
,
Santos
,
T. G.
, and
Oliveira
,
J. P.
,
2019
, “
Current Status and Perspectives on Wire and Arc Additive Manufacturing (WAAM)
,”
Materials (Basel)
,
12
(
7
), p.
1121
.10.3390/ma12071121
15.
Sola
,
A.
, and
Nouri
,
A.
,
2019
, “
Microstructural Porosity in Additive Manufacturing: The Formation and Detection of Pores in Metal Parts Fabricated by Powder Bed Fusion
,”
J. Adv. Manuf. Process
,
1
(
3
), pp.
1
21
.10.1002/amp2.10021
16.
Konečná
,
R.
,
Nicoletto
,
G.
,
Bača
,
A.
, and
Kunz
,
L.
,
2015
, “
Microstructure, Defects and Fractoghaphy of Ti6Al4V Alloys Produced by SLM and DMLS
,”
Powder Metall. Prog.
,
15
(
86
), pp.
86
93
.http://www.imr.saske.sk/pmp/issue/ss_2015/PMP_Vol15_ss_p_086-093.pdf
17.
Delgado
,
J.
,
Ciurana
,
J.
, and
Rodríguez
,
C. A.
,
2012
, “
Influence of Process Parameters on Part Quality and Mechanical Properties for DMLS and SLM With Iron-Based Materials
,”
Int. J. Adv. Manuf. Technol.
,
60
(
5–8
), pp.
601
610
.10.1007/s00170-011-3643-5
18.
Grünberger
,
T.
, and
Domröse
,
R.
,
2015
, “
Direct Metal Laser Sintering: Identification of Process Phenomena by Optical In-Process Monitoring
,”
Laser Tech. J.
,
12
(
1
), pp.
45
48
.10.1002/latj.201500007
19.
Luo
,
Z.
, and
Zhao
,
Y.
,
2018
, “
A Survey of Finite Element Analysis of Temperature and Thermal Stress Fields in Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
21
, pp.
318
332
.10.1016/j.addma.2018.03.022
20.
Marrey
,
M.
,
Malekipour
,
E.
,
El-Mounayri
,
H.
, and
Faierson
,
E. J.
,
2019
, “
A Framework for Optimizing Process Parameters in Powder Bed Fusion (PBF) Process Using Artificial Neural Network (ANN)
,”
Procedia Manuf.
,
34
, pp.
505
515
.10.1016/j.promfg.2019.06.214
21.
Lütjering
,
G.
, and
Williams
,
J. C.
,
2007
,
Titanium
, 2nd ed.,
Springer
, Berlin.10.1016/B978-0-12-386454-3.00942-8
22.
Donachie
,
M. J.
,
2015
, “Heat Treating,”
Titanium: A Technical Guide
, 2nd ed., ASM International, Novelty, OH, pp.
54
67
.
23.
Simonelli
,
M.
,
Tse
,
Y. Y.
, and
Tuck
,
C.
,
2014
, “
Effect of the Build Orientation on the Mechanical Properties and Fracture Modes of SLM Ti–6Al–4V
,”
Mater. Sci. Eng. A
,
616
, pp.
1
11
.10.1016/j.msea.2014.07.086
24.
Rafi
,
H. K.
,
Starr
,
T. L.
, and
Stucker
,
B. E.
,
2013
, “
A Comparison of the Tensile, Fatigue, and Fracture Behavior of Ti–6Al–4V and 15-5 PH Stainless Steel Parts Made by Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,
69
(
5–8
), pp.
1299
1309
.10.1007/s00170-013-5106-7
25.
Zhao
,
X.
,
Li
,
S.
,
Zhang
,
M.
,
Liu
,
Y.
,
Sercombe
,
T. B.
,
Wang
,
S.
,
Hao
,
Y.
,
Yang
,
R.
, and
Murr
,
L. E.
,
2016
, “
Comparison of the Microstructures and Mechanical Properties of Ti–6Al–4V Fabricated by Selective Laser Melting and Electron Beam Melting
,”
Mater. Des.
,
95
, pp.
21
31
.10.1016/j.matdes.2015.12.135
26.
Rafi
,
H. K.
,
Karthik
,
N. V.
,
Gong
,
H.
,
Starr
,
T. L.
, and
Stucker
,
B. E.
,
2013
, “
Microstructures and Mechanical Properties of Ti6Al4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting
,”
J. Mater. Eng. Perform.
,
22
(
12
), pp.
3872
3883
.10.1007/s11665-013-0658-0
27.
Nicoletto
,
G.
,
2017
, “
Anisotropic High Cycle Fatigue Behavior of Ti–6Al–4V Obtained by Powder Bed Laser Fusion
,”
Int. J. Fatigue
,
94
, pp.
255
262
.10.1016/j.ijfatigue.2016.04.032
28.
Benedetti
,
M.
,
Torresani
,
E.
,
Leoni
,
M.
,
Fontanari
,
V.
,
Bandini
,
M.
,
Pederzolli
,
C.
, and
Potrich
,
C.
,
2017
, “
The Effect of Post-Sintering Treatments on the Fatigue and Biological Behavior of Ti–6Al–4V ELI Parts Made by Selective Laser Melting
,”
J. Mech. Behav. Biomed. Mater.
,
71
, pp.
295
306
.10.1016/j.jmbbm.2017.03.024
29.
Nicoletto
,
G.
,
Maisano
,
S.
,
Antolotti
,
M.
, and
Dall'aglio
,
F.
,
2017
, “
Influence of Post Fabrication Heat Treatments on the Fatigue Behavior of Ti–6Al–4V Produced by Selective Laser Melting
,”
Procedia Struct. Integr.
,
7
, pp.
133
140
.10.1016/j.prostr.2017.11.070
30.
Zhang
,
D.
,
Wang
,
L.
,
Zhang
,
H.
,
Maldar
,
A.
,
Zhu
,
G.
,
Chen
,
W.
,
Park
,
J. S.
,
Wang
,
J.
, and
Zeng
,
X.
,
2020
, “
Effect of Heat Treatment on the Tensile Behavior of Selective Laser Melted Ti–6Al–4V by in Situ X-Ray Characterization
,”
Acta Mater.
,
189
, pp.
93
104
.10.1016/j.actamat.2020.03.003
31.
Vrancken
,
B.
,
Thijs
,
L.
,
Kruth
,
J. P.
, and
Van Humbeeck
,
J.
,
2012
, “
Heat Treatment of Ti6Al4V Produced by Selective Laser Melting: Microstructure and Mechanical Properties
,”
J. Alloys Compd.
,
541
, pp.
177
185
.10.1016/j.jallcom.2012.07.022
32.
ter Haar
,
G. M.
,
Becker
,
T. H.
, and
Blaine
,
D. C.
,
2016
, “
Influence of Heat Treatments on the Microstructure and Tensile Behaviour of Selective Laser Melting-Produced TI–6AL–4V Parts
,”
South Afr. J. Ind. Eng.
,
27
(
3
), pp.
174
183
.10.7166/27-3-1663
33.
Vilaro
,
T.
,
Colin
,
C.
, and
Bartout
,
J. D.
,
2011
, “
As-Fabricated and Heat-Treated Microstructures of the Ti–6Al–4V Alloy Processed by Selective Laser Melting
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
,
42
(
10
), pp.
3190
3199
.10.1007/s11661-011-0731-y
34.
Mierzejewska
,
Z. A.
,
Hudák
,
R.
, and
Sidun
,
J.
,
2019
, “
Mechanical Properties and Microstructure of DMLS Ti6Al4V Alloy Dedicated to Biomedical Applications
,”
Materials (Basel)
,
12
(
1
), p.
176
.10.3390/ma12010176
35.
Mierzejewska
,
Z. A.
,
2019
, “
Effect of Laser Energy Density, Internal Porosity and Heat Treatment on Mechanical Behavior of Biomedical TI6AL4V Alloy Obtained With DMLS Technology
,”
Materials (Basel)
,
12
(
18
), p.
2928
.10.3390/ma12182928
36.
Wang
,
Z.
,
Liu
,
P.
,
Xiao
,
Y.
,
Cui
,
X.
,
Hu
,
Z.
, and
Chen
,
L.
,
2019
, “
A Data-Driven Approach for Process Optimization of Metallic Additive Manufacturing Under Uncertainty
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p.
081004
.10.1115/1.4043798
37.
Yeung
,
H.
,
Yang
,
Z.
, and
Yan
,
L.
,
2020
, “
A Meltpool Prediction Based Scan Strategy for Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
35
, p.
101383
.10.1016/j.addma.2020.101383
38.
Yan
,
W.
,
Lin
,
S.
,
Kafka
,
O. L.
,
Lian
,
Y.
,
Yu
,
C.
,
Liu
,
Z.
,
Yan
,
J.
,
Wolf
,
S.
,
Wu
,
H.
,
Ndip-Agbor
,
E.
,
Mozaffar
,
M.
,
Ehmann
,
K.
,
Cao
,
J.
,
Wagner
,
G. J.
, and
Liu
,
W. K.
,
2018
, “
Data-Driven Multi-Scale Multi-Physics Models to Derive Process–Structure–Property Relationships for Additive Manufacturing
,”
Comput. Mech.
,
61
(
5
), pp.
521
541
.10.1007/s00466-018-1539-z
39.
Zurada
,
J. M.
,
1992
,
Introduction to Artificial Neural Systems
, 1st ed, West Publishing Company, St. Paul, MN.
40.
Zi
,
Z.
,
2011
, “
Sensitivity Analysis Approaches Applied to Systems Biology Models
,”
IET Syst. Biol.
,
5
(
6
), pp.
336
346
.10.1049/iet-syb.2011.0015
41.
Tang
,
Y.
,
Reed
,
P.
,
Wagener
,
T.
, and
Van Werkhoven
,
K.
,
2007
, “
Comparing Sensitivity Analysis Methods to Advance Lumped Watershed Model Identification and Evaluation
,”
Hydrol. Earth Syst. Sci.
,
11
(
2
), pp.
793
817
.10.5194/hess-11-793-2007
42.
Wan
,
H.
,
Xia
,
J.
,
Zhang
,
L.
,
She
,
D.
,
Xiao
,
Y.
, and
Zou
,
L.
,
2015
, “
Sensitivity and Interaction Analysis Based on Sobol' Method and Its Application in a Distributed Flood Forecasting Model
,”
Water (Switzerland)
,
7
(
12
), pp.
2924
2951
.10.3390/w7062924
43.
Sobol
,
I. M.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
(
1–3
), pp.
271
280
.10.1016/S0378-4754(00)00270-6
44.
Hamdia
,
K. M.
,
Ghasemi
,
H.
,
Zhuang
,
X.
,
Alajlan
,
N.
, and
Rabczuk
,
T.
,
2018
, “
Sensitivity and Uncertainty Analysis for Flexoelectric Nanostructures
,”
Comput. Methods Appl. Mech. Eng.
,
337
, pp.
95
109
.10.1016/j.cma.2018.03.016
45.
Kumar
,
D.
,
Singh
,
A.
,
Kumar
,
P.
,
Jha
,
R. K.
,
Sahoo
,
S. K.
, and
Jha
,
V.
,
2020
, “
Sobol Sensitivity Analysis for Risk Assessment of Uranium in Groundwater
,”
Environ. Geochem. Health
,
42
(
6
), pp.
1789
1801
.10.1007/s10653-020-00522-5
46.
Shein
,
I. R.
, and
Ivanovskii
,
A. L.
,
2015
, “
All Russian Mathematical Portal
,”
Pis'ma v Zh. Èksper. Teoret. Fiz.
,
8
(
2
), pp.
33
165
.
47.
Emiliano
,
P. C.
,
Vivanco
,
M. J. F.
, and
De Menezes
,
F. S.
,
2014
, “
Information Criteria: How Do They Behave in Different Models
,”
Comput. Stat. Data Anal.
,
69
, pp.
141
153
.10.1016/j.csda.2013.07.032
48.
Wang
,
Z.
,
Jiang
,
C.
,
Liu
,
P.
,
Yang
,
W.
,
Zhao
,
Y.
,
Horstemeyer
,
M. F.
,
Chen
,
L. Q.
,
Hu
,
Z.
, and
Chen
,
L.
,
2020
, “
Uncertainty Quantification and Reduction in Metal Additive Manufacturing
,”
NPJ Comput. Mater.
,
6
(
1
), p.
175
.10.1038/s41524-020-00444-x
49.
Shcherbakov
,
M. V.
,
Brebels
,
A.
,
Shcherbakova
,
N. L.
,
Tyukov
,
A. P.
,
Janovsky
,
T. A.
, and
Evich Kamaev
,
V. A.
,
2013
, “
A Survey of Forecast Error Measures
,”
World Appl. Sci. J.
,
24
(
24
), pp.
171
176
.10.5829/idosi.wasj.2013.24.itmies.80032
50.
López-Cruz
,
I. L.
,
Rojano-Aguilar
,
A.
,
Salazar-Moreno
,
R.
,
Ruiz-García
,
A.
, and
Goddard
,
J.
,
2012
, “
A Comparison of Local and Global Sensitivity Analyses for Greenhouse Crop Models
,”
Acta Hortic.
,
957
(
957
), pp.
267
273
.10.17660/ActaHortic.2012.957.30
51.
Saltelli
,
A.
Chan
,
K.
, and
Scott
,
E. M.
,
2000
,
Sensitivity Analysis
,
John and Wiley & Sons
,
New York
.
52.
Morio
,
J.
,
2011
, “
Global and Local Sensitivity Analysis Methods for a Physical System
,”
Eur. J. Phys.
,
32
(
6
), pp.
1577
1583
.10.1088/0143-0807/32/6/011
53.
Fousová
,
M.
,
Vojtěch
,
D.
,
Doubrava
,
K.
,
Daniel
,
M.
, and
Lin
,
C. F.
,
2018
, “
Influence of Inherent Surface and Internal Defects on Mechanical Properties of Additively Manufactured Ti6Al4V Alloy: Comparison Between Selective Laser Melting and Electron Beam Melting
,”
Materials (Basel)
,
11
(
4
), p.
537
.10.3390/ma11040537
54.
Van Hooreweder
,
B.
,
Boonen
,
R.
,
Moens
,
D.
, and
Kruth
,
J. P.
, and Sas, P.,
2012
, “
On the Determination of Fatigue Properties of Ti6Al4V Produced by Selective Laser Melting
,”
53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI
, Apr. 23–26, pp. 1–9.10.2514/6.2012-1733
55.
Günther
,
J.
,
Krewerth
,
D.
,
Lippmann
,
T.
,
Leuders
,
S.
,
Tröster
,
T.
,
Weidner
,
A.
,
Biermann
,
H.
, and
Niendorf
,
T.
,
2017
, “
Fatigue Life of Additively Manufactured Ti–6Al–4V in the Very High Cycle Fatigue Regime
,”
Int. J. Fatigue
,
94
, pp.
236
245
.10.1016/j.ijfatigue.2016.05.018
56.
Edwards
,
P.
, and
Ramulu
,
M.
,
2014
, “
Fatigue Performance Evaluation of Selective Laser Melted Ti–6Al–4V
,”
Mater. Sci. Eng. A
,
598
, pp.
327
337
.10.1016/j.msea.2014.01.041
57.
Gong
,
H.
,
Rafi
,
K.
,
Gu
,
H.
,
Janaki Ram
,
G. D.
,
Starr
,
T.
, and
Stucker
,
B.
,
2015
, “
Influence of Defects on Mechanical Properties of Ti–6Al–4V Components Produced by Selective Laser Melting and Electron Beam Melting
,”
Mater. Des.
,
86
, pp.
545
554
.10.1016/j.matdes.2015.07.147
58.
Kasperovich
,
G.
, and
Hausmann
,
J.
,
2015
, “
Improvement of Fatigue Resistance and Ductility of TiAl6V4 Processed by Selective Laser Melting
,”
J. Mater. Process. Technol.
,
220
, pp.
202
214
.10.1016/j.jmatprotec.2015.01.025
59.
Eric
,
W.
,
Claus
,
E.
,
Shafaqat
,
S.
, and
Frank
,
W.
,
2013
, “
High Cycle Fatigue (HCF) Performance of Ti–6Al–4V Alloy Processed by Selective Laser Melting
,”
Adv. Mater. Res.
,
816–817
, pp.
134
139
.10.4028/www.scientific.net/AMR.816-817.134
60.
Leuders
,
S.
,
Lieneke
,
T.
,
Lammers
,
S.
,
Tröster
,
T.
, and
Niendorf
,
T.
,
2014
, “
On the Fatigue Properties of Metals Manufactured by Selective Laser melting – The Role of Ductility
,”
J. Mater. Res.
,
29
(
17
), pp.
1911
1919
.10.1557/jmr.2014.157
61.
Rekedal
,
K. D.
, and
Liu
,
D.
,
2015
, “
Fatigue Life of Selective Laser Melted and Hot Isostatically Pressed Ti–6Al–4V Absent of Surface Machining
,”
6th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, Kissimmee, FL, Jan. 5–9, pp.
1
9
.10.2514/6.2015-0894
62.
Xu
,
W.
,
Sun
,
S.
,
Elambasseril
,
J.
,
Liu
,
Q.
,
Brandt
,
M.
, and
Qian
,
M.
,
2015
, “
Ti–6Al–4V Additively Manufactured by Selective Laser Melting With Superior Mechanical Properties
,”
JOM
,
67
(
3
), pp.
668
673
.10.1007/s11837-015-1297-8
63.
Benedetti
,
M.
,
Fontanari
,
V.
,
Bandini
,
M.
,
Zanini
,
F.
, and
Carmignato
,
S.
,
2018
, “
Low- and High-Cycle Fatigue Resistance of Ti–6Al–4V ELI Additively Manufactured Via Selective Laser Melting: Mean Stress and Defect Sensitivity
,”
Int. J. Fatigue
,
107
, pp.
96
109
.10.1016/j.ijfatigue.2017.10.021
64.
Tridello
,
A.
,
Fiocchi
,
J.
,
Biffi
,
C. A.
,
Chiandussi
,
G.
,
Rossetto
,
M.
,
Tuissi
,
A.
, and
Paolino
,
D. S.
,
2019
, “
VHCF Response of Heat-Treated SLM Ti6Al4V Gaussian Specimens With Large Loaded Volume
,”
Procedia Struct. Integr.
,
18
, pp.
314
321
.10.1016/j.prostr.2019.08.171
65.
Wycisk
,
E.
,
Solbach
,
A.
,
Siddique
,
S.
,
Herzog
,
D.
,
Walther
,
F.
, and
Emmelmann
,
C.
,
2014
, “
Effects of Defects in Laser Additive Manufactured Ti–6Al–4V on Fatigue Properties
,”
Phys. Procedia
,
56
(
C
), pp.
371
378
.10.1016/j.phpro.2014.08.120
66.
Fatemi
,
A.
,
Molaei
,
R.
,
Sharifimehr
,
S.
,
Phan
,
N.
, and
Shamsaei
,
N.
,
2017
, “
Multiaxial Fatigue Behavior of Wrought and Additive Manufactured Ti–6Al–4V Including Surface Finish Effect
,”
Int. J. Fatigue
,
100
, pp.
347
366
.10.1016/j.ijfatigue.2017.03.044
67.
Carrion
,
P. E.
,
Soltani-Tehrani
,
A.
,
Thompson
,
S. M.
, and
Shamsaei
,
N.
,
2018
, “
Effect of Powder Degradation on the Fatigue Behavior of Additively Manufactured as-Built Ti–6Al–4V
,”
Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference
, The University of Texas at Austin, Austin, TX, pp.
1366
1372
.https://www.researchgate.net/publication/328876142_Effect_of_Powder_Degradation_on_the_Fatigue_Behavior_of_Additively_Manufactured_As-Built_Ti-6Al-4V
68.
Xu
,
W.
,
Brandt
,
M.
,
Sun
,
S.
,
Elambasseril
,
J.
,
Liu
,
Q.
,
Latham
,
K.
,
Xia
,
K.
, and
Qian
,
M.
,
2015
, “
Additive Manufacturing of Strong and Ductile Ti–6Al–4V by Selective Laser Melting Via in Situ Martensite Decomposition
,”
Acta Mater.
,
85
, pp.
74
84
.10.1016/j.actamat.2014.11.028
69.
Facchini
,
L.
,
Magalini
,
E.
,
Robotti
,
P.
,
Molinari
,
A.
,
Höges
,
S.
, and
Wissenbach
,
K.
,
2010
, “
Ductility of a Ti–6Al–4V Alloy Produced by Selective Laser Melting of Prealloyed Powders
,”
Rapid Prototyp. J.
,
16
(
6
), pp.
450
459
.10.1108/13552541011083371
70.
Mertens
,
A.
,
Reginster
,
S.
,
Paydas
,
H.
,
Contrepois
,
Q.
,
Dormal
,
T.
,
Lemaire
,
O.
, and
Lecomte-Beckers
,
J.
,
2014
, “
Mechanical Properties of Alloy Ti–6Al–4V and of Stainless Steel 316 L Processed by Selective Laser Melting: Influence of Out-of-Equilibrium Microstructures
,”
Powder Metall.
,
57
(
3
), pp.
184
189
.10.1179/1743290114Y.0000000092
71.
Agius
,
D.
,
Kourousis
,
K. I.
,
Wallbrink
,
C.
, and
Song
,
T.
,
2017
, “
Cyclic Plasticity and Microstructure of as-Built SLM Ti–6Al–4V: The Effect of Build Orientation
,”
Mater. Sci. Eng. A
,
701
, pp.
85
100
.10.1016/j.msea.2017.06.069
72.
Vrancken
,
B.
,
Buls
,
S.
,
Kruth
,
J.-P.
, and
Van Humbeeck
,
J.
,
2016
, “
Preheating of Selective Laser Melted Ti6Al4V: Microstructure and Mechanical Properties
,”
Proceedings of the 13th World Conference on Titanium
, San Diego, CL, Aug. 16–20, pp.
1269
1277
.10.1002/9781119296126.ch215
73.
Cain
,
V.
,
Thijs
,
L.
,
Van Humbeeck
,
J.
,
Van Hooreweder
,
B.
, and
Knutsen
,
R.
,
2015
, “
Crack Propagation and Fracture Toughness of Ti6Al4V Alloy Produced by Selective Laser Melting
,”
Addit. Manuf.
,
5
, pp.
68
76
.10.1016/j.addma.2014.12.006
74.
Kourousis
,
K. I.
,
Agius
,
D.
,
Wang
,
C.
, and
Subic
,
A.
,
2016
, “
Constitutive Modeling of Additive Manufactured Ti–6Al–4V Cyclic Elastoplastic Behaviour
,”
Tech. Mech.
,
36
(
1–2
), pp.
57
72
.10.24352/ub.ovgu-2017-010
75.
Wysocki
,
B.
,
Maj
,
P.
,
Sitek
,
R.
,
Buhagiar
,
J.
,
Kurzydłowski
,
K.
, and
Święszkowski
,
W.
,
2017
, “
Laser and Electron Beam Additive Manufacturing Methods of Fabricating Titanium Bone Implants
,”
Appl. Sci.
,
7
(
7
), pp.
657
20
.10.3390/app7070657
76.
Kumar
,
P.
, and
Ramamurty
,
U.
,
2019
, “
Microstructural Optimization Through Heat Treatment for Enhancing the Fracture Toughness and Fatigue Crack Growth Resistance of Selective Laser Melted Ti–6Al–4V Alloy
,”
Acta Mater.
,
169
, pp.
45
59
.10.1016/j.actamat.2019.03.003
77.
Kumar
,
P.
,
Prakash
,
O.
, and
Ramamurty
,
U.
,
2018
, “
Micro-and Meso-Structures and Their Influence on Mechanical Properties of Selectively Laser Melted Ti–6Al–4V
,”
Acta Mater.
,
154
, pp.
246
260
.10.1016/j.actamat.2018.05.044
78.
Agius
,
D.
,
Kourousis
,
K. I.
, and
Wallbrink
,
C.
,
2018
, “
Elastoplastic Response of as-Built SLM and Wrought Ti–6Al–4V Under Symmetric and Asymmetric Strain-Controlled Cyclic Loading
,”
Rapid Prototyp. J.
,
24
(
9
), pp.
1409
1420
.10.1108/RPJ-05-2017-0105
79.
Vandenbroucke
,
B.
, and
Kruth
,
J. P.
,
2007
, “
Selective Laser Melting of Biocompatible Metals for Rapid Manufacturing of Medical Parts
,”
Rapid Prototyp. J.
,
13
(
4
), pp.
196
203
.10.1108/13552540710776142
80.
Kourousis
,
K. I.
,
Agius
,
D.
, Wallbrink, C., Brandt, M., and Wang, C. H.,
2017
, “
Uniaxial Cyclic Stress-Strain Behaviour of Ti–6Al–4V Additively Manufactured by Selective Laser Melt
,” 20th International ESAFORM Conference on Material Forming, Dublin, Ireland, Apr.
26
28
.
81.
Bikas
,
H.
,
Stavropoulos
,
P.
, and
Chryssolouris
,
G.
,
2015
, “
Additive Manufacturing Methods and Modelling Approaches: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
, 83(1–4), pp.
389
405
.10.1007/s00170-015-7576-2
82.
Becker
,
T. H.
,
Beck
,
M.
, and
Scheffer
,
C.
,
2015
, “
Microstructure and Mechanical Properties of Direct Metal Laser Sintered Ti–6Al–4V
,”
South Afr. J. Ind. Eng.
,
26
(
1
), pp.
1
10
.10.7166/26-1-1022
You do not currently have access to this content.