Recent concerns relating to global warming caused by greenhouse gases, coupled with a growing awareness of the limited available resources of fossil fuels, have spurred an interest in alternative energy powered vehicles. This paper describes the analysis, development, and testing of an aerodynamic vehicle powered by photovoltaic cells. The primary components of the vehicle are the composite material body, the aluminum space frame, the wheel hubs and front suspension assembly, the drive train, and the electrical system. The frame was designed using finite element analysis with the components of the frame modeled as beam elements. The body, designed to have a very high strength-to-weight ratio, was of graphite/Kevlar/Nomex sandwich construction. Testing was carried out using the three-point bend test to determine the optimal sandwich cross-sectional configuration. The design of the front suspension, the wheel hubs, and the power transmission are also discussed. The electrical system, based on a monocrystalline photovoltaic cell assembly, and silver-zinc storage cells, is also described. Finally, results of the optimization routine developed are also described.

This content is only available via PDF.
You do not currently have access to this content.