This study concerns experimental evaluation of heat transfer during energy storage and release for the phase change of paraffin wax in spherical shells. Measurements are made using air as the heat transfer fluid (HTF), copper spheres with diameters of 2, 3, 4, and 6 cm. A detailed temperature field is obtained within the spheres using 10 thermocouple wires. Values of the air velocity and temperature used in the experiments are 4–10 m/s and 60–90°C, respectively. Measured times for melting and solidification varied over a range of 5–15 and 2–5 minutes, respectively. Calculations show that the Nusselt number in the phase change material (PCM) during melting is one order of magnitude higher than during solidification. Results indicate that the Nusselt number for melting has a strong dependence on the sphere diameter, lower dependence on the air temperature, and a negligible dependence on the air velocity. Variations in the Fourier number for melting and solidification show similar trends. An increase in the Nusselt number for a larger sphere diameter is attributed to increase in natural convection cells in the PCM inside the spheres. The larger volume allows for the free motion for the descent and rise of cooler and hotter molten wax. During the solidification process, the solid wax is evenly formed through the sphere, starting from the outer surface and moving inward. As the solidification proceeds, the melt volume decreases with a simultaneous decrease in the magnitude of natural convection within the melt. The higher values of Fourier number for melting indicate the consumption of a large part of the HTF energy in heating the molten wax rather than melting of the solid wax.

1.
Yagi
,
J.
, and
Akiyama
,
T.
,
1995
, “
Storage of Thermal Energy for Effective Use of Waste Heat From Industries
,”
J. Mater. Process. Technol.
,
48
, pp.
793
804
.
2.
Dincer
,
I.
, and
Dost
,
S.
,
1996
, “
A Perspective on Thermal Energy Storage Systems for Solar Energy Applications
,”
Int. J. Energy Res.
,
20
, pp.
547
557
.
3.
Hasain
,
S. M.
,
1998
, “
Review on Sustainable Thermal Energy Storage Technologies, Part I: Heat Storage Materials and Techniques
,”
Energy Convers. Manage.
,
39
, pp.
1127
1138
.
4.
Hasain
,
S. M.
,
1998
, “
Review on Sustainable Thermal Energy Storage Technologies, Part II: Cool Thermal Storage Technologies
,”
Energy Convers. Manage.
,
39
, pp.
1139
1152
.
5.
Beasley
,
D. E.
,
Ramanarayanan
,
C.
, and
Torab
,
H.
,
1989
, “
Thermal Response of Packed Bed of Spheres Containing a Phase-Change Material
,”
Int. J. Energy Res.
,
13
, pp.
253
265
.
6.
Saitoh, T. S., Kato, H., and Hoshina, H., 1996, “Theoretical Analysis for Combined Close-Contact and Natural Convection Melting in Ice Storage Spherical Capsule,” Proceedings of the 1996 31st Intersociety Energy Conversion Engineering Conference, Washington, DC.
7.
Watanbe
,
T.
,
Kikuchi
,
H.
, and
Kanzawa
,
A.
,
1993
, “
Enhancement of Charging and Discharging Rates in a Latent Heat Storage System by Use of PCM With Different Melting Temperatures
,”
Heat Recovery Syst. CHP
,
13
, pp.
57
66
.
8.
Barba
,
A.
, and
Spiga
,
M.
,
2003
, “
Discharge Mode for Encapsulated PCMS in Storage Tanks
,”
Sol. Energy
,
74
, pp.
141
148
.
9.
Hawlder
,
M. N. A.
,
Uddin
,
M. S.
, and
Khin
,
M. M.
,
2003
, “
Microencapsulated PCM Thermal-Energy Storage System
,”
Appl. Energy
,
74
, pp.
195
202
.
10.
Marshal
,
R.
, and
Dietsche
,
C.
,
1982
, “
Comparisons of Paraffin Wax Storage Subsystem Models Using Liquid Heat Transfer Media
,”
Sol. Energy
,
29
, pp.
503
511
.
11.
Marshall
,
R.
,
1984
, “
Parametric Sensitivity Studies Using Paraffin Wax Storage Sub-Systems
,”
Sol. Energy
,
32
, pp.
41
48
.
12.
Ibrahim
,
M.
,
Sokolov
,
P.
,
Kerslae
,
T.
, and
Tolber
,
C.
,
2000
, “
Experimental and Computational Investigations of Phase Change Thermal Energy Storage Canisters
,”
ASME J. Sol. Energy Eng.
,
122
, pp.
176
182
.
13.
Kerslake
,
T. W.
, and
Ibrahim
,
M. B.
,
1993
, “
Analysis of Thermal Energy Storage Material With Change-of-Phase Volumetric Effects
,”
ASME J. Sol. Energy Eng.
,
115
, pp.
22
31
.
14.
Farid
,
M.
, and
Yacoub
,
K.
,
1989
, “
Performance of Direct Contact Latent Heat Storage Unit
,”
Sol. Energy
,
43
, pp.
237
251
.
15.
Bansal, N. K., and Buddhi, D., 1992, “Performance Equations of a Collector Cum Storage System Using Phase Change Materials,” Journal, 48, pp. 185–194.
16.
Hoogendoorn
,
C. J.
, and
Bart
,
G. C. J.
,
1992
, “
Performance and Modelling of Latent Heat Stores
,”
Sol. Energy
,
48
, pp.
53
58
.
17.
Tong
,
X.
,
Khan
,
J. A.
, and
Amin
,
M. R.
,
1996
, “
Enhancement of Heat Transfer by Inserting a Metal Matrix Into a Phase Change Material
,”
Numer. Heat Transfer, Part A
,
30
, pp.
125
141
.
18.
Choi
,
J. C.
, and
Kim
,
S. D.
,
1992
, “
Heat-Transfer Characteristics of a Latent Heat Storage System Using MgCl2⋅6H2O,
Energy
,
17
, pp.
1153
1164
.
19.
Barford, N. C., 1990, Experimental Measurements: Precision, Error and Truth, John Wiley & Sons, New York, 2nd edn.
20.
Incropera, F. P., and DeWitt, D. P., 1996, Fundamentals of Heat and Mass Transfer, 4th ed., Wiley, New York, p. 374.
You do not currently have access to this content.