The thermal stability of a molten LiNaK carbonate salt, potentially suitable for thermal energy storage, was studied up to a temperature of 1000 °C. The salt investigated was the eutectic Li2CO3–Na2CO3–K2CO3 in the proportions 32.1–33.4–34.5 wt. % and the study was done by simultaneous differential scanning calorimetry (DSC)/thermogravimetric–mass spectrometric (TG–MS) analysis in gas atmospheres of argon, air, and CO2. It was found that (i) under a blanket gas atmosphere of CO2 the LiNaK carbonate salt is stable up to at least 1000 °C. (ii) In an inert atmosphere of argon, the salt evolves gaseous CO2 soon after melting and begins to decompose at between 710 °C and 715 °C with acceleration in the CO2 evolution rate from the melt. An increase in the rate of weight loss is also observed after 707 °C. (iii) Under a blanket atmosphere of air, the gaseous CO2 evolution from the salt is observed to commence at 530 °C, the onset of decomposition detected by DSC analysis at 601 °C and the rapid rate of weight loss determined by TG analysis at 673 °C. The melting point of the LiNaK carbonate studied was between 400 °C and 405 °C. Thermodynamic modeling with Multi-Phase-Equilibrium (MPE) software developed in CSIRO Process Science and Engineering indicated that additives such as NaNO3, KCl, and NaOH lower the melting point of the LiNaK carbonate eutectic, and this was experimentally verified.

References

1.
Gil
,
A.
,
Medrano
,
M.
,
Martorell
,
I.
,
Lazaro
,
A.
,
Dolado
,
P.
,
Zalba
,
B.
, and
Cabeza
,
L. F.
,
2010
, “
State of the Art on High Temperature Thermal Energy Storage for Power Generation. Part 1—Concepts, Materials and Modellization
,”
Renewable Sustainable Energy Rev.
,
14
,
pp.
31
55
.10.1016/j.rser.2009.07.035
2.
Kenisarin
,
M.
,
2010
, “
High-Temperature Phase Change Materials for Thermal Energy Storage
,”
Renewable Sustainable Energy Rev.
,
14
,
pp.
955
970
.10.1016/j.rser.2009.11.011
3.
Medrano
,
M.
,
Gil
,
A.
,
Martorell
,
I.
,
Potau
,
X.
, and
Cabeza
,
L. F.
,
2010
, “
State of the Art on High Temperature Thermal Energy Storage for Power Generation. Part 2—Case Studies
,”
Renewable Sustainable Energy Rev.
,
14
,
pp.
56
72
.10.1016/j.rser.2009.07.036
4.
Ren
,
N.
,
Wu
,
Y.
,
Wang
,
T.
, and
Ma
,
C.
,
2011
, “
Experimental Study on Optimized Composition of Mixed Carbonate for Phase Change Thermal Storage in Solar Thermal Power Plant
,”
J. Therm. Anal. Calorim.
,
104
(
3
),
pp.
1201
1208
.10.1007/s10973-011-1364-5
5.
Olivares
,
R.
, “
The Thermal Stability of Molten Nitrite/Nitrates Based Salt for Solar Thermal Energy Storage in Different Atmospheres
,” Solar Energy
(accepted)
.
6.
Wu
,
Y.
,
Ren
,
N.
,
Wang
,
T.
, and
Ma
,
C.
,
2011
, “
Experimental Study on Optimized Composition of Mixed Carbonate Salt for Sensible Heat Storage in Solar Thermal Power Plant
,”
Sol. Energy
,
85
(
9
),
pp.
1957
1966
.10.1016/j.solener.2011.05.004
7.
Lukas
,
H. L.
,
Fries
,
S. G.
, and
Sundman
,
B.
,
2007
,
Computational Thermodynamics: The CALPHAD Method
,
Cambridge University Press
,
Cambridge, UK
.
8.
Spencer
,
P.
,
2008
, “
A Brief History of CALPHAD
,”
CALPHAD: Comput. Coupling Phase Diagrams Thermochem.
,
32
,
pp.
1
8
.10.1016/j.calphad.2007.10.001
9.
Zhang
,
L.
,
Jahanshahi
,
S.
,
Sun
,
S.
,
Chen
,
C.
,
Bourke
,
B.
,
Wright
,
S.
, and
Somerville
,
M.
,
2002
, “
CSIRO's Multi-Phase Reaction Model and Its Applications in Industry
,”
J. Met.
,
54
,
pp.
51
56
. 10.1007/BF02709751
10.
Cook
,
L. P.
, and
McMurdie
,
H. F.
,
1989
,
Phase Diagrams for Ceramists
,
The American Ceramic Society, Inc.
,
Columbus, OH
,
Vol.
VII
,
pp.
63
68
.
11.
Ejima
,
T.
,
Sato
,
Y.
,
Yamamura
,
T.
,
Tamai
,
K.
,
Hasebe
,
M.
,
Bohn
,
M. S.
, and
Janz
,
G. J.
,
1987
, “
Viscosity of the Eutectic Li2CO3-Na2CO3-K2CO3 Melt
,”
J. Chem. Eng. Data
,
32
(
2
),
pp.
180
182
.10.1021/je00048a016
12.
Bowcott
,
J. E. L.
, and
Plunkett
,
B. A.
,
1969
, “
Diffusion of the Ag(I) Ion Sodium and Potassium Nitrate Melts
,”
Electrochim. Acta
,
14
,
pp.
363
372
.10.1016/0013-4686(69)80012-5
13.
Bradshaw
,
R. W.
,
2010
, “
Viscosity of Multi-Component Molten Nitrate Salts—Liquidus to 200 °C
,”
Sandia National Laboratories
,
Report No. SAND2010-1129
.
14.
Michels
,
H.
, and
Pitz-Pal
,
R.
,
2007
, “
Cascade Latent Heat Storage for Parabolic Trough Solar Power Plants
,”
Sol. Energy
,
81
,
pp.
829
837
.10.1016/j.solener.2006.09.008
15.
Shin
,
B.
,
Kim
,
S. D.
, and
Park
,
W. H.
,
1990
, “
Ternary Carbonate Eutectic (Lithium, Sodium and Potassium Carbonates) for Latent Heat Storage Medium
,”
Sol. Energy Mater.
,
21
,
pp.
81
90
.10.1016/0165-1633(90)90044-2
16.
Coyle
,
R.
,
Thomas
,
T.
, and
Lai
,
Y. G.
,
1986
, “
Exploratory Corrosion Tests on Alloys in Molten Salts at 900 °C
,”
J. Mater. Energy Syst.
,
7
(
4
),
pp.
345
354
.10.1007/BF02833573
You do not currently have access to this content.