A theoretical mathematical model that considers the continuous linear porosity or pore diameter distribution is established to develop a novel porous absorber with variable pore structure, which will result in a thermopressure drop improvement. Efficient performance can be achieved based on reconstruction of the velocity, temperature, and radiation fields. Collimated and diffusive radiative heat fluxes and the heat loss mechanism from the irradiated surface are analyzed in the presence of the volumetric effect. This study analyzes three typical linear pore structure distributions: increasing (I), decreasing (D), and constant (C) types, respectively. In general, the D type porosity (φ) layout combined with the I type pore diameter (dp) distribution would be an excellent pore structure layout for a porous absorber.

References

1.
Daabo
,
A. M.
,
Mahmoud
,
S.
, and
Al-Dadah
,
R. K.
,
2016
, “
The Optical Efficiency of Three Different Geometries of a Small Scale Cavity Receiver for Concentrated Solar Applications
,”
Appl. Energy
,
179
, pp.
1081
1096
.
2.
Ho
,
C. K.
, and
Iverson
,
B. D.
,
2014
, “
Review of High-Temperature Central Receiver Designs for Concentrating Solar Power
,”
Renewable Sustainable Energy Rev.
,
29
, pp.
835
846
.
3.
Roldán
,
M. I.
,
Zarza
,
E.
, and
Casas
,
J. L.
,
2015
, “
Modelling and Testing of a Solar-Receiver System Applied to High-Temperature Processes
,”
Renewable Energy
,
76
, pp.
608
618
.
4.
Roldán
,
M. I.
,
Fernández-Reche
,
J.
, and
Ballestrín
,
J.
,
2016
, “
Computational Fluid Dynamics Evaluation of the Operating Conditions for a Volumetric Receiver Installed in a Solar Tower
,”
Energy
,
94
, pp.
844
856
.
5.
Cheng
,
Z. D.
,
He
,
Y. L.
, and
Cui
,
F. Q.
,
2013
, “
A New Modelling Method and Unified Code With MCRT for Concentrating Solar Collectors and Its Applications
,”
Appl. Energy
,
101
, pp.
686
698
.
6.
Chen
,
X.
,
Xia
,
X.-L.
,
Dong
,
X.-H.
, and
Dai
,
G.-L.
,
2015
, “
Integrated Analysis on the Volumetric Absorption Characteristics and Optical Performance for a Porous Media Receiver
,”
Energy Convers. Manage.
,
105
, pp.
562
569
.
7.
Fend
,
T.
,
Schwarzbözl
,
P.
,
Smirnova
,
O.
,
Schöllgen
,
D.
, and
Jakob
,
C.
,
2013
, “
Numerical Investigation of Flow and Heat Transfer in a Volumetric Solar Receiver
,”
Renewable Energy
,
60
, pp.
655
661
.
8.
Aichmayer
,
L.
,
Spelling
,
J.
, and
Laumert
,
B.
,
2015
, “
Preliminary Design and Analysis of a Novel Solar Receiver for a Micro Gas-Turbine Based Solar Dish System
,”
Sol. Energy
,
114
, pp.
378
396
.
9.
Wang
,
P.
,
Vafai
,
K.
,
Liu
,
D. Y.
, and
Xu
,
C.
,
2015
, “
Analysis of Collimated Irradiation Under Local Thermal Non-Equilibrium Condition in a Packed Bed
,”
Int. J. Heat Mass Transfer
,
80
, pp.
789
801
.
10.
Wang
,
P.
,
Liu
,
D. Y.
,
Xu
,
C.
,
Xia
,
L.
, and
Zhou
,
L.
,
2016
, “
A Unified Heat Transfer Model in a Pressurized Volumetric Solar Receivers
,”
Renewable Energy
,
99
, pp.
663
672
.
11.
Wang
,
P.
,
Li
,
J. B.
,
Bai
,
F. W.
,
Liu
,
D. Y.
,
Xu
,
C.
,
Zhao
,
L.
, and
Wang
,
Z. F.
,
2017
, “
Experimental and Theoretical Evaluation on the Thermal Performance of a Windowed Volumetric Solar Receiver
,”
Energy
,
119
, pp.
652
661
.
12.
Roldán
,
M. I.
,
Smirnova
,
O.
,
Fend
,
T.
,
Casas
,
J. L.
, and
Zarza
,
E.
,
2014
, “
Thermal Analysis and Design of a Volumetric Solar Absorber Depending on the Porosity
,”
Renewable Energy
,
62
(
3
), pp.
116
128
.
13.
Chen
,
X.
,
Xia
,
X.-L.
,
Meng
,
X.-L.
, and
Dong
,
X.-H.
,
2015
, “
Thermal Performance Analysis on a Volumetric Solar Receiver With Double-Layer Ceramic Foam
,”
Energy Convers. Manage.
,
97
, pp.
282
289
.
14.
Wang
,
P.
,
Vafai
,
K.
, and
Liu
,
D. Y.
,
2016
, “
Analysis of the Volumetric Phenomenon in Porous Beds Subject to Irradiation
,”
Numer. Heat Transfer, Part A
,
70
(
6
), pp.
567
580
.
15.
Alazmi
,
B.
, and
Vafai
,
K.
,
2000
, “
Analysis of Variants Within the Porous Media Transport Models
,”
ASME J. Heat Transfer
,
122
(
2
), pp.
303
326
.
16.
Hwang
,
G. J.
,
Wu
,
C. C.
, and
Chao
,
C. H.
,
1995
, “
Investigation of Non-Darcian Forced Convection in an Asymmetrically Heated Sintered Porous Channel
,”
ASME J. Heat Transfer
,
117
(
3
), pp.
725
732
.
17.
Hendricks
,
T. J.
, and
Howell
,
J. R.
,
1996
, “
Absorption/Scattering Coefficients and Scattering Phase Functions in Reticulated Porous Ceramics
,”
ASME J. Heat Transfer
,
118
(
1
), pp.
79
87
.
18.
Lemmon
,
E. W.
,
Jacobsen
,
R. T.
,
Penoncello
,
S. G.
, and
Friend
,
D. G.
,
2000
, “
Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon, and Oxygen From 60 to 2000 K at Pressures to 2000 MPa
,”
J. Phys. Chem. Ref. Data
,
29
(
3
), pp.
331
385
.
You do not currently have access to this content.