Abstract

A water-based silver nanofluid (Ag/PW) was prepared from gelatin-stabilized silver nanoparticles (Ag NPs) of about 15 nm and further used as a working fluid in an evacuated U-tube solar collector (EUSC) to investigate the variation in the collector efficiency. An Ag/PW nanofluid having 0.035 wt% was prepared and demonstrated a good promise of colloidal stability when dispersed in pure water. Collector efficiency measurements were carried out at outdoor conditions with four different mass flow rate values (0.063, 0.051, 0.033, and 0.02 kg/s). Results showed that Ag/PW have superior heat transfer properties than that of pure water as the base fluid. It was found that the efficiency of the collector was directly proportional to the mass flow rate of the working fluid until an optimum value was attained. Experimental results show that the highest collector efficiency was 72.2% at 0.051 kg/s mass flow rate, which is 21.3% higher than that of the pure water.

References

1.
Mehrali
,
M.
,
Sadeghinezhad
,
E.
,
Reza
,
A.
,
Tahan
,
S.
,
Talebian
,
S.
,
Dolatshahi-pirouz
,
A.
,
Simon
,
H.
,
Metselaar
,
C.
, and
Mehrali
,
M.
,
2016
, “
An Ecofriendly Graphene-Based Nanofluid for Heat Transfer Applications
,”
J. Clean. Prod.
,
137
, pp.
555
566
. 10.1016/j.jclepro.2016.07.136
2.
Kalogirou
,
S.
,
2003
, “
The Potential of Solar Industrial Process Heat Applications
,”
Appl. Energy
,
76
(
4
), pp.
337
361
. 10.1016/S0306-2619(02)00176-9
3.
Yousefi
,
T.
,
Veysi
,
F.
,
Shojaeizadeh
,
E.
, and
Zinadini
,
S.
,
2012
, “
An Experimental Investigation on the Effect of Al2O3-H2O Nanofluid on the Efficiency of Flat-Plate Solar Collectors
,”
Renew. Energy
,
39
(
1
), pp.
293
298
. 10.1016/j.renene.2011.08.056
4.
Liu
,
Z. H.
,
Hu
,
R. L.
,
Lu
,
L.
,
Zhao
,
F.
, and
Xiao
,
H. S.
,
2013
, “
Thermal Performance of an Open Thermosyphon Using Nanofluid for Evacuated Tubular High Temperature Air Solar Collector
,”
Energy Convers. Manag.
,
73
, pp.
135
143
. 10.1016/j.enconman.2013.04.010
5.
Kim
,
H.
,
Kim
,
J.
, and
Cho
,
H.
,
2017
, “
Experimental Study on Performance Improvement of U-Tube Solar Collector Depending on Nanoparticle Size and Concentration of Al2O3 Nanofluid
,”
Energy
,
118
, pp.
1304
1312
. 10.1016/j.energy.2016.11.009
6.
He
,
Q.
,
Zeng
,
S.
, and
Wang
,
S.
,
2014
, “
Experimental Investigation on the Efficiency of Flat-Plate Solar Collectors With Nanofluids
,”
Appl. Therm. Eng.
,
88
, pp.
165
171
. 10.1016/j.applthermaleng.2014.09.053
7.
Tong
,
Y.
,
Kim
,
J.
, and
Cho
,
H.
,
2015
, “
Effects of Thermal Performance of Enclosed-Type Evacuated U-Tube Solar Collector With Multi-Walled Carbon Nanotube/Water Nanofluid
,”
Renew. Energy
,
83
, pp.
463
473
. 10.1016/j.renene.2015.04.042
8.
Ozsoy
,
A.
, and
Corumlu
,
V.
,
2018
, “
Thermal Performance of a Thermosyphon Heat Pipe Evacuated Tube Solar Collector Using Silver-Water Nanofluid for Commercial Applications
,”
Renew. Energy
,
122
, pp.
26
34
. 10.1016/j.renene.2018.01.031
9.
Sharafeldin
,
M. A.
, and
Gróf
,
G.
,
2019
, “
Efficiency of Evacuated Tube Solar Collector Using WO3/Water Nanofluid
,”
Renew. Energy
,
134
, pp.
453
460
. 10.1016/j.renene.2018.11.010
10.
Sharafeldin
,
M. A.
, and
Gróf
,
G.
,
2018
, “
Evacuated Tube Solar Collector Performance Using CeO2/Water Nanofluid
,”
J. Clean. Prod.
,
185
, pp.
347
356
. 10.1016/j.jclepro.2018.03.054
11.
Kaya
,
H.
,
Arslan
,
K.
, and
Eltugral
,
N.
,
2018
, “
Experimental Investigation of Thermal Performance of an Evacuated U-Tube Solar Collector With ZnO/Etylene Glycol-Pure Water Nanofluids
,”
Renew. Energy
,
122
, pp.
329
338
. 10.1016/j.renene.2018.01.115
12.
Kaya
,
H.
, and
Arslan
,
K.
,
2019
, “
Numerical Investigation of Efficiency and Economic Analysis of an Evacuated U-Tube Solar Collector With Different Nanofluids
,”
Heat Mass Transf.
,
55
(
3
), pp.
581
593
. 10.1007/s00231-018-2442-z
13.
Dehaj
,
M. S.
, and
Mohiabadi
,
M. Z.
,
2019
, “
Experimental Investigation of Heat Pipe Solar Collector Using MgO Nanofluids
,”
Sol. Energy Mater. Sol. Cells
,
191
, pp.
91
99
. 10.1016/j.solmat.2018.10.025
14.
Korres
,
D. N.
,
Tzivanidis
,
C.
,
Koronaki
,
I. P.
, and
Nitsas
,
M. T.
,
2019
, “
Experimental, Numerical and Analytical Investigation of a U-Type Evacuated Tube Collectors’ Array
,”
Renew. Energy
,
135
, pp.
218
231
. 10.1016/j.renene.2018.12.003
15.
Mahbubul
,
I. M.
,
Mumtaz
,
M.
,
Khan
,
A.
,
Ibrahim
,
N. I.
,
Al-sulaiman
,
F. A.
, and
Saidur
,
R.
,
2018
, “
Carbon Nanotube Nano Fluid in Enhancing the Efficiency of Evacuated Tube Solar Collector
,”
Renew. Energy
,
121
, pp.
36
44
. 10.1016/j.renene.2018.01.006
16.
Eidan
,
A. A.
,
AlSahlani
,
A.
,
Ahmed
,
A. Q.
,
Al-fahham
,
M.
, and
Jalil
,
J. M.
,
2018
, “
Improving the Performance of Heat Pipe-Evacuated Tube Solar Collector Experimentally by Using Al2O3 and CuO/Acetone Nanofluids
,”
Sol. Energy
,
173
, pp.
780
788
. 10.1016/j.solener.2018.08.013
17.
Yang Gan
,
Y.
,
Chyuan Ong
,
H.
,
Chuan Ling
,
T.
,
Zulkifli
,
N. W. M.
,
Wang
,
C.-T.
, and
Yang
,
Y.-C.
,
2018
, “
Thermal Conductivity Optimization and Entropy Generation Analysis of Titanium Dioxide Nanofluid in Evacuated Tube Solar Collector
,”
Appl. Therm. Eng.
,
145
, pp.
155
164
.
18.
Kim
,
H.
,
Ham
,
J.
,
Park
,
C.
, and
Cho
,
H.
,
2016
, “
Theoretical Investigation of the Efficiency of a U-Tube Solar Collector Using Various Nanofluids
,”
Energy
,
94
, pp.
497
507
. 10.1016/j.energy.2015.11.021
19.
Iranmanesh
,
S.
,
Ong
,
H. C.
,
Ang
,
B. C.
,
Sadeghinezhad
,
E.
,
Esmaeilzadeh
,
A.
, and
Mehrali
,
M.
,
2017
, “
Thermal Performance Enhancement of an Evacuated Tube Solar Collector Using Graphene Nanoplatelets Nanofluid
,”
J. Clean. Prod.
,
162
, pp.
121
129
. 10.1016/j.jclepro.2017.05.175
20.
Zhu
,
T.
,
Zhao
,
Y.
,
Diao
,
Y.
,
Li
,
F.-F.
, and
Quan
,
Z.
,
2017
, “
Experimental Investigation and Performance Evaluation of a Vacuum Tube Solar Air Collector Based on Micro Heat Pipe Arrays
,”
J. Clean. Prod.
,
142
, pp.
3517
3526
. 10.1016/j.jclepro.2016.10.116
21.
Muhammad
,
M. J.
,
Muhammad
,
I. A.
,
Che Sidik
,
N. A.
, and
Muhammad Yazid
,
M. N. A. W.
,
2016
, “
Thermal Performance Enhancement of Flat-Plate and Evacuated Tube Solar Collectors Using Nanofluid: A Review
,”
Int. Commun. Heat Mass Transf.
,
76
, pp.
6
15
. 10.1016/j.icheatmasstransfer.2016.05.009
22.
Sabiha
,
M. A.
,
Saidur
,
R.
,
Hassani
,
S.
,
Said
,
Z.
, and
Mekhilef
,
S.
,
2015
, “
Energy Performance of an Evacuated Tube Solar Collector Using Single Walled Carbon Nanotubes Nanofluids
,”
Energy Convers. Manag.
,
105
, pp.
1377
1388
. 10.1016/j.enconman.2015.09.009
23.
Mahendran
,
M.
,
Ali
,
T. Z. S.
,
Shahrani
,
A.
, and
Bakar
,
R. A.
,
2013
, “
The Efficiency Enhancement on the Direct Flow Evacuated Tube Solar Collector Using Water-Based Titanium Oxide Nanofluids
,”
Appl. Mech. Mater.
,
465–466
, pp.
308
315
. 10.4028/www.scientific.net/AMM.465-466.308
24.
Kim
,
Y.
, and
Seo
,
T.
,
2007
, “
Thermal Performances Comparisons of the Glass Evacuated Tube Solar Collectors With Shapes of Absorber Tube
,”
Renew. Energy
,
32
(
5
), pp.
772
795
. 10.1016/j.renene.2006.03.016
25.
Gao
,
Y.
,
Fan
,
R.
,
Zhang
,
X. Y.
,
AN
,
Y. J.
,
Wang
,
M. X.
,
Gao
,
Y. K.
, and
Yu
,
Y.
,
2014
, “
Thermal Performance and Parameter Analysis of a U-Pipe Evacuated Solar Tube Collector
,”
Sol. Energy
,
107
, pp.
714
727
. 10.1016/j.solener.2014.05.023
26.
Ma
,
Y.
,
Li
,
W.
,
Cho
,
E. C.
,
Li
,
Z.
,
Yu
,
T.
,
Zeng
,
J.
,
Xie
,
Z.
, and
Xia
,
Y.
,
2010
, “
Au@Ag Core-Shell Nanocubes With Finely Tuned and Well-Controlled Sizes, Shell Thicknesses, and Optical Properties
,”
ACS Nano
,
4
(
11
), pp.
6725
6734
. 10.1021/nn102237c
27.
Zhang
,
X. F.
,
Liu
,
Z. G.
,
Shen
,
W.
, and
Gurunathan
,
S.
,
2016
, “
Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches
,”
Int. J. Mol. Sci.
,
17
, p.
9
. 10.3390/ijms17091534
28.
Chauhan
,
R. P.
,
Gupta
,
C.
, and
Prakash
,
D.
,
2012
, “
Methodological Advancements in Green Nanotechnology and Their Applications in Biological Synthesis of Herbal Nanoparticles
,”
Int. J. Bioassays
,
1
(
7
), pp.
6
10
. 10.21746/ijbio.2012.07.003
29.
Cui
,
J.
,
Hu
,
C.
,
Yang
,
Y.
,
Wu
,
Y.
,
Yang
,
L.
,
Wang
,
Y.
,
Liu
,
Y.
, and
Jiang
,
Z.
,
2012
, “
Facile Fabrication of Carbonaceous Nanospheres Loaded With Silver Nanoparticles as Antibacterial Materials
,”
J. Mater. Chem.
,
22
(
16
), pp.
8121
8126
. 10.1039/c2jm16441h
30.
Chen
,
M.
,
He
,
Y.
,
Zhu
,
J.
, and
Wen
,
D.
,
2016
, “
Investigating the Collector Efficiency of Silver Nanofluids Based Direct Absorption Solar Collectors
,”
Appl. Energy
,
181
, pp.
65
74
. 10.1016/j.apenergy.2016.08.054
31.
Chen
,
M.
,
He
,
Y.
,
Zhu
,
J.
,
Shuai
,
Y.
,
Jiang
,
B.
, and
Huang
,
Y.
,
2015
, “
An Experimental Investigation on Sunlight Absorption Characteristics of Silver Nanofluids
,”
Sol. Energy
,
115
, pp.
85
94
. 10.1016/j.solener.2015.01.031
32.
Kurukavak
,
A.
,
2019
, “
ÇALIŞMA AKIŞKANI OLARAK Ag/SAF SU NANOAKIŞKANI KULLANILAN BİR VAKUM TÜPLÜ U-BORULU GÜNEŞ KOLEKTÖRÜNÜN DENEYSEL OLARAK İNCELENMESİ
,”
Karabük University
,
Karabük, Turkey
.
33.
Holman
,
J.
,
2011
,
Experimental Methods for Engineers
,
McGraw Hill
,
New York
.
34.
Gao
,
Y.
,
Zhang
,
Q.
,
Fan
,
R.
,
Lin
,
X.
, and
Yu
,
Y.
,
2013
, “
Effects of Thermal Mass and Flow Rate on Forced-Circulation Solar Hot-Water System: Comparison of Water-in-Glass and U-Pipe Evacuated-Tube Solar Collectors
,”
Sol. Energy
,
98
, pp.
290
301
. 10.1016/j.solener.2013.10.014
35.
Yousefi
,
T.
,
Shojaeizadeh
,
E.
,
Veysi
,
F.
, and
Zinadini
,
S.
,
2012
, “
An Experimental Investigation on the Effect of PH Variation of MWCNT–H2O Nanofluid on the Efficiency of a Flat-Plate Solar Collector
,”
Sol. Energy
,
86
, pp.
771
779
. 10.1016/j.solener.2011.12.003
36.
Shojaeizadeh
,
E.
,
Veysi
,
F.
,
Yousefi
,
T.
, and
Davodi
,
F.
,
2014
, “
An Experimental Investigation on the Efficiency of a Flat-Plate Solar Collector With Binary Working Fluid: A Case Study of Propylene Glycol (PG)-Water
,”
Exp. Therm. Fluid Sci.
,
53
, pp.
218
226
. 10.1016/j.expthermflusci.2013.12.011
37.
ASHRAE
,
1986
, “
ASHRAE Standard 86-93. Methods of Testing to Determine the Thermal Performance of Solar Collectors
,”
Atlanta, GA
.
38.
Duffie
,
J.
, and
Beckman
,
W.
,
2006
,
Solar Engineering of Thermal Processes
,
John Wiley & Sons
,
Haboken, NJ
.
39.
Wang
,
H.
,
Qiao
,
X.
,
Chen
,
J.
,
Wang
,
X.
, and
Ding
,
S.
,
2005
, “
Mechanisms of PVP in the Preparation of Silver Nanoparticles
,”
Mater. Chem. Phys.
,
94
(
2–3
), pp.
449
453
. 10.1016/j.matchemphys.2005.05.005
40.
Malina
,
D.
,
Sobczak-Kupiec
,
A.
,
Wzorek
,
Z.
, and
Kowalski
,
Z.
,
2012
, “
Silver Nanoparticles Synthesis With Different Concentrations of Polyvinylpyrrolidone
,”
Dig. J. Nanomater. Biostruct.
,
7
(
4
), pp.
1527
1534
.
41.
Mahmudin
,
L.
,
Suharyadi
,
E.
,
Bambang
,
A.
,
Utomo
,
S.
, and
Abraha
,
K.
,
2015
, “
Optical Properties of Silver Nanoparticles for Surface Plasmon Resonance (SPR)-Based Biosensor Applications
,”
J. Mod. Phys.
,
6
, pp.
1071
1076
. 10.4236/jmp.2015.68111
42.
Šimáková
,
P.
,
Gautier
,
J.
,
Procházka
,
M.
,
Hervé-Aubert
,
K.
, and
Chourpa
,
I.
,
2014
, “
Polyethylene-Glycol-Stabilized Ag Nanoparticles for Surface-Enhanced Raman Scattering Spectroscopy: Ag Surface Accessibility Studied Using Metalation of Free-Base Porphyrins
,”
J. Phys. Chem. C
,
118
(
14
), pp.
7690
7697
. 10.1021/jp5005709
43.
Sivera
,
M.
,
Kvitek
,
L.
,
Soukupova
,
J.
,
Panacek
,
A.
,
Prucek
,
R.
,
Vecerova
,
R.
, and
Zboril
,
R.
,
2014
, “
Silver Nanoparticles Modified by Gelatin With Extraordinary PH Stability and Long-Term Antibacterial Activity
,”
PLoS One
,
9
, p.
8
. 10.1371/journal.pone.0103675
44.
Darroudi
,
M.
,
Ahmad
,
M. B.
,
Zak
,
A. K.
,
Zamiri
,
R.
, and
Hakimi
,
M.
,
2011
, “
Fabrication and Characterization of Gelatin Stabilized Silver Nanoparticles Under UV-Light
,”
Int. J. Mol. Sci.
,
12
(
9
), pp.
6346
6356
. 10.3390/ijms12096346
45.
Incropera
,
F. P.
,
Bergman
,
T. L.
,
Lavine
,
A. S.
, and
DeWitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
,
Haboken, NJ
.
46.
Tong
,
Y.
, and
Cho
,
H.
,
2015
, “
Comparative Study on the Thermal Performance of Evacuated Solar Collectors With U-Tubes and Heat Pipes
,”
Int. J. Air Conditioning Refrig.
,
23
(
3
), p.
1550019
. 10.1142/S2010132515500194
47.
Slistan-Grijalva
,
A.
,
Herrera-Urbina
,
R.
,
Rivas-Silva
,
J. F.
,
Ávalos-Borja
,
M.
,
Castillón-Barraza
,
F. F.
, and
Posada-Amarillas
,
A.
,
2005
, “
Classical Theoretical Characterization of the Surface Plasmon Absorption Band for Silver Spherical Nanoparticles Suspended in Water and Ethylene Glycol
,”
Phys. E Low Dimensional Syst. Nanostruct.
,
27
(
1–2
), pp.
104
112
. 10.1016/j.physe.2004.10.014
48.
Bijanzadeh
,
A. R.
,
Vakili
,
M. R.
, and
Khordad
,
R.
,
2012
, “
A Study of the Surface Plasmon Absorption Band for Nanoparticles
,”
Int. J. Phys. Sci.
,
7
(
13
), pp.
1943
1948
. 10.5897/IJPS11.893
49.
Amendola
,
V.
,
Bakr
,
O. M.
, and
Stellacci
,
F.
,
2010
, “
A Study of the Surface Plasmon Resonance of Silver Nanoparticles by the Discrete Dipole Approximation Method: Effect of Shape, Size, Structure, and Assembly
,”
Plasmonics
,
5
(
1
), pp.
85
97
. 10.1007/s11468-009-9120-4
50.
Moghadam
,
A. J.
,
Farzane-Gord
,
M.
,
Sajadi
,
M.
, and
Hoseyn-Zadeh
,
M.
,
2014
, “
Effects of CuO/Water Nanofluid on the Efficiency of a Flat-Plate Solar Collector
,”
Exp. Therm. Fluid Sci.
,
58
, pp.
9
14
. 10.1016/j.expthermflusci.2014.06.014
51.
Ma
,
L.
,
Lu
,
Z.
,
Zhang
,
J.
, and
Liang
,
R.
,
2010
, “
Thermal Performance Analysis of the Glass Evacuated Tube Solar Collector With U-Tube
,”
Build. Environ.
,
45
(
9
), pp.
1959
1967
. 10.1016/j.buildenv.2010.01.015
52.
Liang
,
R.
,
Ma
,
L.
,
Zhang
,
J.
, and
Zhao
,
D.
,
2012
, “
Experimental Study on Thermal Performance of Filled-Type Evacuated Tube With U-Tube
,”
Heat Mass Transf.
,
48
, pp.
989
997
. 10.1007/s00231-011-0912-7
You do not currently have access to this content.