Abstract

A novel multi-generation system (MGS) that comprises two absorption cycles, two Rankine cycles (RCs), and a hot water (HW) production chamber is studied in this research. It is designed to utilize the waste heat from the first Rankine cycle as a thermal energy input for the second Rankine cycle and a double-effect absorption cycle (DEAC). The waste heat from the second Rankine cycle serves as heat input to a single-effect Rankine cycle. Regeneration and reheat principles are also applied to the Rankine cycles. The objective of the study is to develop an MGS without a gas cycle that can achieve higher energy and exergy efficiencies. Two concentrated solar technologies, namely, parabolic trough collectors (PTCs) and heliostats are used to power the designed system. The environmental benefit of the system is also analyzed. The energy and exergy efficiencies of the novel MGS presented in this study are 73.11% and 50.72%, respectively. The application of solar thermal technologies to power the system reduces the overall energy and exergy efficiencies, respectively, to 56.12% and 38.39% for the solar PTC and 41.89% and 29.06% for heliostats. The energy and exergy coefficient of performances (COPs) are 0.754 and 0.349 for the single-effect absorption cycle (SEAC), respectively. As much as 752.7 kg/h of CO2, 2.13 kg/h of NOx, and 4.21 kg/h of SOx will be saved from being emitted to the atmosphere.

References

1.
Thewes
,
A.
,
Maas
,
S.
,
Scholzen
,
F.
,
Waldmann
,
D.
, and
Zürbes
,
A.
,
2014
, “
Field Study on the Energy Consumption of School Buildings in Luxembourg
,”
Energy Build.
,
68
(
Part A
), pp.
460
470
. 10.1016/j.enbuild.2013.10.002
2.
Fuentes-Cortés
,
L. F.
,
Dowling
,
A. W.
,
Rubio-Maya
,
C.
,
Zavala
,
V. M.
, and
Ponce-Ortega
,
J. M.
,
2016
, “
Integrated Design and Control of Multigeneration Systems for Building Complexes
,”
Energy
,
116
, pp.
1403
1416
. 10.1016/j.energy.2016.05.093
3.
Ahmadi
,
P.
,
Rosen
,
M. A.
, and
Dincer
,
I.
,
2012
, “
Multi-Objective Exergy-Based Optimization of a Polygeneration Energy System Using an Evolutionary Algorithm
,”
Energy
,
46
(
1
), pp.
21
31
. 10.1016/j.energy.2012.02.005
4.
El-Emam
,
R. S.
, and
Dincer
,
I.
,
2018
, “
Development and Assessment of a Novel Solar Heliostat-Based Multigeneration System
,”
Int. J. Hydrogen Energy
,
43
(
5
), pp.
2610
2620
. 10.1016/j.ijhydene.2017.12.026
5.
Hafez
,
A. Z.
,
Attia
,
A. M.
,
Eltwab
,
H. S.
,
ElKousy
,
A. O.
,
Afifi
,
A. A.
,
AbdElhamid
,
A. G.
,
AbdElqader
,
A. N.
,
Fateen
,
S-E. K.
,
El-Metwally
,
K. A.
,
Soliman
,
A.
, and
Ismail
,
I. M.
,
2018
, “
Design Analysis of Solar Parabolic Trough Thermal Collectors
,”
Renew. Sustain. Energy Rev.
,
82
, pp.
1215
1260
. 10.1016/j.rser.2017.09.010
6.
Stuetzle
,
T.
,
Blair
,
N.
,
Mitchell
,
J. W.
, and
Beckman
,
W. A.
,
2004
, “
Automatic Control of a 30 MWe SEGS VI Parabolic Trough Plant
,”
Sol. Energy
,
76
(
1–3
), pp.
187
193
. 10.1016/j.solener.2003.01.002
7.
Padilla
,
R. V.
,
Fontalvo
,
A.
,
Demirkaya
,
G.
,
Martinez
,
A.
, and
Quiroga
,
A. G.
,
2014
, “
Exergy Analysis of Parabolic Trough Solar Receiver
,”
Appl. Therm. Eng.
,
67
(
1–2
), pp.
579
586
. 10.1016/j.applthermaleng.2014.03.053
8.
Cheng
,
Z. D.
,
He
,
Y. L.
,
Cui
,
F. Q.
,
Xu
,
R. J.
, and
Tao
,
Y. B.
,
2012
, “
Numerical Simulation of a Parabolic Trough Solar Collector With Nonuniform Solar Flux Conditions by Coupling FVM and MCRT Method
,”
Sol. Energy
,
86
(
6
), pp.
1770
1784
. 10.1016/j.solener.2012.02.039
9.
Sun
,
J.
,
Liu
,
Q.
, and
Hong
,
H.
,
2015
, “
Numerical Study of Parabolic-Trough Direct Steam Generation Loop in Recirculation Mode: Characteristics, Performance and General Operation Strategy
,”
Energy Convers. Manage
,
96
, pp.
287
302
. 10.1016/j.enconman.2015.02.080
10.
Zaversky
,
F.
,
García-Barberena
,
J.
,
Sánchez
,
M.
, and
Astrain
,
D.
,
2012
, “
Probabilistic Modeling of a Parabolic Trough Collector Power Plant—An Uncertainty and Sensitivity Analysis
,”
Sol. Energy
,
86
(
7
), pp.
2128
2139
. 10.1016/j.solener.2012.04.015
11.
Valenzuela
,
L.
,
López-Martín
,
R.
, and
Zarza
,
E.
,
2014
, “
Optical and Thermal Performance of Large-Size Parabolic-Trough Solar Collectors From Outdoor Experiments: A Test Method and a Case Study
,”
Energy
,
70
, pp.
456
464
. 10.1016/j.energy.2014.04.016
12.
Forristall
,
R.
,
2003
, “
Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver
,”
Natl. Renew. Energy Lab.
, p.
164
. 10.2172/15004820
13.
Arun
,
C. A.
, and
Sreekumar
,
P. C.
,
2018
, “
Modeling and Performance Evaluation of Parabolic Trough Solar Collector Desalination System
,”
Mater. Today: Proc.
,
5
(
1
), pp.
780
788
. 10.1016/j.matpr.2017.11.147
14.
Thalange
,
V. C.
,
Dalvi
,
V. H.
,
Mahajani
,
S. M.
,
Panse
,
S. V.
,
Joshi
,
J. B.
, and
Patil
,
R. N.
,
2017
, “
Design, Optimization and Optical Performance Study of Tripod Heliostat for Solar Power Tower Plant
,”
Energy
,
135
, pp.
610
624
. 10.1016/j.energy.2017.06.116
15.
Al-Zareer
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2017
, “
Development and Assessment of a New Solar Heliostat Field Based System Using a Thermochemical Water Decomposition Cycle Integrated With Hydrogen Compression
,”
Sol. Energy
,
151
, pp.
186
201
. 10.1016/j.solener.2017.04.045
16.
Huang
,
W.
, and
Sun
,
L.
,
2016
, “
Solar Flux Density Calculation for a Heliostat With an Elliptical Gaussian Distribution Source
,”
Appl. Energy
,
182
, pp.
434
441
. 10.1016/j.apenergy.2016.08.082
17.
Fan
,
M.
,
Liang
,
H.
,
You
,
S.
,
Zhang
,
H.
,
Yin
,
B.
, and
Wu
,
X.
,
2018
, “
Applicability Analysis of the Solar Heating System With Parabolic Trough Solar Collectors in Different Regions of China
,”
Appl. Energy
,
221
, pp.
100
111
. 10.1016/j.apenergy.2018.03.137
18.
Nation
,
D. D.
,
Heggs
,
P. J.
, and
Dixon-Hardy
,
D. W.
,
2017
, “
Modelling and Simulation of a Novel Electrical Energy Storage (EES) Receiver for Solar Parabolic Trough Collector (PTC) Power Plants
,”
Appl. Energy
,
195
, pp.
950
973
. 10.1016/j.apenergy.2017.03.084
19.
Ahmadi
,
P.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2013
, “
Development and Assessment of an Integrated Biomass-Based Multi-Generation Energy System
,”
Energy
,
56
, pp.
155
166
. 10.1016/j.energy.2013.04.024
20.
El-Emam
,
R. S.
, and
Dincer
,
I.
,
2016
, “
Assessment and Evolutionary Based Multi-Objective Optimization of a Novel Renewable-Based Polygeneration Energy System
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012003
. 10.1115/1.4033625
21.
Khalid
,
F.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2015
, “
Energy and Exergy Analyses of a Solar-Biomass Integrated Cycle for Multigeneration
,”
Sol. Energy
,
112
, pp.
290
299
. 10.1016/j.solener.2014.11.027
22.
Peacock
,
A. D.
, and
Newborough
,
M.
,
2005
, “
Impact of Micro-CHP Systems on Domestic Sector CO2 Emissions
,”
Appl. Therm. Eng.
,
25
(
17–18
), pp.
2653
2676
. 10.1016/j.applthermaleng.2005.03.015
23.
Sadegheih
,
A.
,
2010
, “
A Novel Formulation of Carbon Emissions Costs for Optimal Design Configuration of System Transmission Planning
,”
Renew. Energy
,
35
(
5
), pp.
1091
1097
. 10.1016/j.renene.2009.10.011
24.
Keirstead
,
J.
,
Samsatli
,
N.
,
Shah
,
N.
, and
Weber
,
C.
,
2012
, “
The Impact of CHP (Combined Heat and Power) Planning Restrictions on the Efficiency of Urban Energy Systems
,”
Energy
,
41
(
1
), pp.
93
103
. 10.1016/j.energy.2011.06.011
25.
Kablouti
,
G.
,
2015
, “
Cost of Water Use: A Driver of Future Investments Into Water-Efficient Thermal Power Plants?
,”
Aquat. Procedia
,
5
, pp.
31
43
. 10.1016/j.aqpro.2015.10.006
26.
Kucukmehmetoglu
,
M.
,
2012
, “
An Integrative Case Study Approach Between Game Theory and Pareto Frontier Concepts for the Transboundary Water Resources Allocations
,”
J. Hydrol.
,
450–451
, pp.
308
319
. 10.1016/j.jhydrol.2012.04.036
27.
Wolsink
,
M.
,
2012
, “
The Research Agenda on Social Acceptance of Distributed Generation in Smart Grids: Renewable as Common Pool Resources
,”
Renew. Sustain. Energy Rev.
,
16
(
1
), pp.
822
835
. 10.1016/j.rser.2011.09.006
28.
Cengel
,
Y. A.
, and
Boles
,
M. A.
,
2011
,
Thermodynamics: An Engineering Approach
, 7th ed.,
McGraw Hill
,
New York
.
29.
Kalogirou
,
S. A.
,
Karellas
,
S.
,
Braimakis
,
K.
,
Stanciu
,
C.
, and
Badescu
,
V.
,
2016
, “
Exergy Analysis of Solar Thermal Collectors and Processes
,”
Prog. Energy Combust. Sci.
,
56
, pp.
106
137
. 10.1016/j.pecs.2016.05.002
30.
Kalogirou
,
S. A.
,
Karellas
,
S.
,
Badescu
,
V.
, and
Braimakis
,
K.
,
2016
, “
Exergy Analysis on Solar Thermal Systems: A Better Understanding of Their Sustainability
,”
Renew. Energy
,
85
, pp.
1328
1333
. 10.1016/j.renene.2015.05.037
31.
Kalogirou
,
S. A.
,
2009
,
Solar Energy Engineering: Processes and Systems
,
Elsevier Ltd.
,
San Diego
.
32.
Bamisile
,
O. O.
,
Dagbasi
,
M.
, and
Abbasoglu
,
S.
,
2016
, “
Economic Feasibility of Replacing Sodium Vapor and High Pressure Mercury Vapor Bulbs With LEDs for Street Lighting
,”
Energy Policy Res.
,
3
(
1
), pp.
27
31
. 10.1080/23815639.2016.1201442
33.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Antonopoulos
,
K. A.
,
2017
, “
A Detailed Working Fluid Investigation for Solar Parabolic Trough Collectors
,”
Appl. Therm. Eng.
,
114
, pp.
374
386
. 10.1016/j.applthermaleng.2016.11.201
You do not currently have access to this content.