Abstract

Concentrated solar power (CSP) is a promising technology in transitioning to renewable energy because of its abundance in nature and thermal energy storage (TES) capability. Among the four types of available CSP technology, including parabolic trough, linear Fresnel, power tower, and parabolic dishes, a power tower using a central receiver has more potential to generate high-temperature heat in a scale supporting power cycles efficiency and achieve low levelized cost of energy (LCOE). Other than the conventional type of receiver design, the high-absorptive receiver concept developed and presented in this paper is novel in its design approach. The novel receiver design originated from National Renewable Energy Laboratory (NREL) consists of an array of solar flux absorb tubes. The solar absorb tubes require uniform flux distribution and in-depth flux penetration through the three different reflective sections of tubes in a hexagonal shape. To evaluate this unique receiver design and thermal performance, the flux distribution, flux uniformity, and intensity were numerically simulated using ansys fluent and SolTrace modeling program. On-sun testing has been done at NREL high flux solar testing facility, based on the computational analysis.

References

1.
Edenhofer
,
O.
,
Pichs-Madruga
,
R.
,
Sokona
,
Y.
,
Seyboth
,
K.
,
Matschoss
,
P.
,
Kadner
,
S.
, and
Zwickel
,
P.
,
IPCC, 2011, Cambridge University Press, Cambridge, UK and New York
.
2.
European Academies Science Advisory Council
,
2011
,
EASAC Policy Report 16
.
3.
Muller-Steinhagen
,
H.
, and
Trieb
,
F.
,
2004
, “
Concentrating Solar Power, a Review of the Technology
,”
Ingenia
,
18
(
18
), pp.
43
50
.
4.
Radosevich
,
L. G.
,
1988
,
Final Report on the Power Production Phase of the 10 MWe Solar Thermal Central Receiver Pilot Plant, Sandia National Laboratories, Albuquerque, NM, Report SANDS87-8022
.
5.
Alpert
,
D.J.
, and
Kolb
,
G.J.
,
1988
,
Performance of the Solar One Power Plant as Simulated by the SOLERGY Computer Code, Sandia National Laboratories, Albuquerque, NM, Report SAND88-0321
.
6.
Fleming
,
A.
,
Folsom
,
C.
,
Ban
,
H.
, and
Ma
,
Z.
,
2017
, “
A General Method to Analyze the Thermal Performance of Multi-Cavity Concentrating Solar Power Receivers
,”
Sol. Energy
,
150
(
1
), pp.
608
618
.
7.
Hale
,
M. J.
,
1999
,
Solar Two Performance Evaluation, National Renewable Energy Lab., Golden, CO (US), Vol. 1, No. NREL/CP-550-26642
.
8.
Falcone
,
P.
,
1986
,
A Handbook for Solar Central Receiver Design
,
Sandia National Lab.
,
Livermore, CA
.
9.
Singer
,
C.
,
Buck
,
R.
,
Pitz-Paal
,
R.
, and
Müller-Steinhagen
,
H.
,
2010
, “
Assessment of Solar Power Tower Driven Ultrasupercritical Steam Cycles Applying Tubular Central Receivers With Varied Heat Transfer Media
,”
ASME J. Sol. Energy Eng.
,
132
(
4
), p.
041010
.
10.
Forsberg
,
C. W.
,
Peterson
,
P. F.
, and
Zhao
,
H.
,
2007
, “
High-Temperature Liquid-Fluoride-Salt Closed-Brayton-Cycle Solar Power Towers
,”
ASME J. Sol. Energy Eng.
,
129
(
2
), pp.
141
146
.
11.
Stern
,
K. H.
,
2001
,
High Temperature Properties and Thermal Decomposition of Inorganic Salts With Oxyanions
, 1st ed.,
CRC Press
,
Boca Raton, FL
.
12.
Mancini
,
T. R.
,
Gary
,
J. A.
,
Kolb
,
G. J.
, and
Ho
,
C. K.
,
2011
,
Power Tower Technology Roadmap and Cost Reduction Plan, Sandia National Laboratories, Albuquerque, NM, Report No. SAND2011–2419
.
13.
Ho
,
C.
, and
Iverson
,
B.
,
2012
,
Review of Central Receiver Designs for High-Temperature Power Cycles, Sandia National Laboratories, Albuquerque, NM, SAND2012-8379C
.
14.
Ma
,
Z.
,
Glatzmaier
,
G.
, and
Mehos
,
M.
,
2014
, “
Fluidized Bed Technology for Concentrating Solar Power With Thermal Energy Storage
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
031014
.
15.
Mehos
,
M.
,
Turchi
,
C.
,
Vidal
,
J.
,
Wagner
,
M.
,
Ma
,
Z.
,
Ho
,
C.
,
Kolb
,
W.
,
Andraka
,
C.
, and
Kruizenga
,
A.
,
2017
,
Concentrating Solar Power Gen3 Demonstration Roadmap, National Renewable Energy Laboratory (NREL), Golden, CO, Technical Report NREL/TP-5500-67464
.
16.
Siegel
,
N.
,
Kolb
,
G.
,
Kim
,
K.
,
Rangaswamy
,
V.
, and
Moujaes
,
S.
,
2007
, “
Solid Particle Receiver Flow Characerization Studies
,”
ASME 2007 Energy Sustainability Conference
,
Long Beach, CA
,
July 27–30
, pp.
877
883
.
17.
Siegel
,
N. P.
,
Ho
,
C. K.
,
Khalsa
,
S. S.
, and
Kolb
,
G. J.
,
2010
, “
Development and Evaluation of a Prototype Solid Particle Receiver: On-Sun Testing and Model Validation
,”
ASME J. Sol. Energy Eng.
,
132
(
2
), p.
021008
.
18.
Morris
,
V. L.
,
1980
, “
Cleaning Agents and Techniques for Concentrating Solar Collectors
,”
Sol. Energy Mater.
,
3
(
1–2
), pp.
35
55
.
19.
ANSYS Inc
,
2013
,
Ansys Fluent 15.0 User’s Guide
,
ANSYS, Inc.
,
Canonsburg, PA
.
20.
Wendelin
,
T.
,
2003
, “
SolTRACE: A New Optical Modeling Tool for Concentrating Solar Optics
,”
ASME 2003 International Solar Energy Conference
,
Kohala Coast, HI
,
Mar. 15–18
, pp.
253
260
.
21.
Wendelin
,
T.
,
Dobos
,
A.
, and
Lewandowski
,
A.
,
2013
,
SolTrace: A Ray-Tracing Code for Complex Solar Optical Systems, National Renewable Energy Laboratory (NREL), Golden, CO, Technical Report NREL/TP-5500-59163
.
You do not currently have access to this content.