Abstract

The inclusion of photovoltaic systems in distribution networks has raised the importance of the prediction of photovoltaic power for safe planning and operation. Artificial neural networks (ANNs) have been used in this task due to its capacity of representing nonlinearities. However, the profile of the data used may affect the forecast accuracy. This manuscript reports on a comparative analysis of the performance of four neural network models for photovoltaic power forecast regarding their input dataset. Four sets composed of photovoltaic power data (local measurements) and external weather data (remote measurements) were used, and the networks were validated through actual measurements from a photovoltaic micro plant. The ANN that dealt with only weather data showed a good level of accuracy, being a useful tool for the feasibility analysis of new photovoltaic projects. In addition, the approach that used only photovoltaic power data has excelled and can be used in electric sector companies.

References

1.
ANEEL
,
2017
. “
0056/2017-SRD/aneel Technical Note: Update of the Projections of Residential and Commercial Consumers with Photovoltaic Solar Microgeneration in the 2017-2024 Horizon. (In Portuguese)
”.
2.
UMICH
,
2019
. U.S. Renewable Energy Factsheet.
3.
Carneiro
,
T. C.
,
de Carvalho
,
P. C. M.
,
Alves dos Santos
,
H.
,
Lima
,
M. A. F. B.
, and
Braga
,
A. P. D. S.
,
2022
, “
Review on Photovoltaic Power and Solar Resource Forecasting: Current Status and Trends
,”
ASME J. Sol. Energy Eng.
,
144
(
1
), p.
010801
.
4.
Von Appen
,
J.
,
Braun
,
M.
,
Stetz
,
T.
,
Diwold
,
K.
, and
Geibel
,
D.
,
2013
, “
Time in the Sun: The Challenge of High PV Penetration in the German Electric Grid
,”
IEEE Power Energy Mag.
,
11
(
2
), pp.
55
64
.
5.
Das
,
U. K.
,
Tey
,
K. S.
,
Seyedmahmoudian
,
M.
,
Mekhilef
,
S.
,
Idris
,
M. Y. I.
,
Van Deventer
,
W.
,
Horan
,
B.
, and
Stojcevski
,
A.
,
2018
, “
Forecasting of Photovoltaic Power Generation and Model Optimization: A Review
,”
Renewable Sustainable Energy Rev.
,
81
(
1
), pp.
912
928
.
6.
Sfetsos
,
A.
, and
Coonick
,
A.
,
2000
, “
Univariate and Multivariate Forecasting of Hourly Solar Radiation With Artificial Intelligence Techniques
,”
Sol. Energy
,
68
(
2
), pp.
169
178
.
7.
Voyant
,
C.
,
Muselli
,
M.
,
Paoli
,
C.
, and
Nivet
,
M.-L.
,
2011
, “
Optimization of An Artificial Neural Network Dedicated to the Multivariate Forecasting of Daily Global Radiation
,”
Energy
,
36
(
1
), pp.
348
359
.
8.
Khatib
,
T.
,
Mohamed
,
A.
,
Sopian
,
K.
, and
Mahmoud
,
M.
,
2012
, “
Solar Energy Prediction for Malaysia Using Artificial Neural Networks
,”
Int. J. Photoenergy
,
2012
(
1
), pp.
1
16
.
9.
Antonanzas
,
J.
,
Osorio
,
N.
,
Escobar
,
R.
,
Urraca
,
R.
,
Martinez-de Pison
,
F. J.
, and
Antonanzas-Torres
,
F.
,
2016
, Review of Photovoltaic Power Forecasting.
10.
Dolara
,
A.
,
Grimaccia
,
F.
,
Leva
,
S.
,
Mussetta
,
M.
, and
Ogliari
,
E.
,
2015
, “
A Physical Hybrid Artificial Neural Network for Short Term Forecasting of PV Plant Power Output
,”
Energies
,
8
(
2
), pp.
1138
1153
.
11.
Raza
,
M. Q.
,
Nadarajah
,
M.
, and
Ekanayake
,
C.
,
2016
, On Recent Advances in PV Output Power Forecast.
12.
Wang
,
F.
,
Xuan
,
Z.
,
Zhen
,
Z.
,
Li
,
Y.
,
Li
,
K.
,
Zhao
,
L.
,
Shafie-khah
,
M.
, and
Catalão
,
J. P.
,
2020
, “
A Minutely Solar Irradiance Forecasting Method Based on Real-Time Sky Image-Irradiance Mapping Model
,”
Energy. Convers. Manage.
,
220
(
2
), p.
113075
.
13.
Li
,
J.
,
Ward
,
J. K.
,
Tong
,
J.
,
Collins
,
L.
, and
Platt
,
G.
,
2016
, “
Machine Learning for Solar Irradiance Forecasting of Photovoltaic System
,”
Renewable Energy
,
90
(
7
), pp.
542
553
.
14.
Sarper
,
H.
,
Melnykov
,
I.
, and
Martínez
,
L. A.
,
2021
, “
Prediction of Daily Photovoltaic Energy Production Using Weather Data and Regression
,”
ASME J. Sol. Energy Eng.
,
143
(
6
), p.
064502
.
15.
Almonacid
,
F.
,
Rus
,
C.
,
Pérez-Higueras
,
P.
, and
Hontoria
,
L.
,
2011
, “
Calculation of the Energy Provided by a PV Generator. Comparative Study: Conventional Methods Vs. Artificial Neural Networks
,”
Energy
,
36
(
1
), pp.
375
384
.
16.
Dumitru
,
C.-D.
,
Gligor
,
A.
, and
Enachescu
,
C.
,
2016
, “
Solar Photovoltaic Energy Production Forecast Using Neural Networks
,”
Procedia Technol.
,
22
(
4
), pp.
808
815
.
17.
Al-Messabi
,
N.
,
Yun
,
L.
,
El-Amin
,
I.
, and
Goh
,
C.
,
2012
, “
Forecasting of Photovoltaic Power Yield Using Dynamic Neural Networks
,”
The 2012 International Joint Conference on Neural Networks (IJCNN)
,
Brisbane, Australia
,
June 10–15
, IEEE, pp.
1
5
.
18.
Ding
,
M.
,
Wang
,
L.
, and
Bi
,
R.
,
2011
, “
An ANN-Based Approach for Forecasting the Power Output of Photovoltaic System
,”
Proc. Environ. Sci.
,
11
(
PART C
), pp.
1308
1315
.
19.
Luo
,
X.
,
Zhang
,
D.
, and
Zhu
,
X.
,
2021
, “
Deep Learning Based Forecasting of Photovoltaic Power Generation by Incorporating Domain Knowledge
,”
Energy
,
225
(
1
), p.
120240
.
20.
Rana
,
M.
,
Koprinska
,
I.
, and
Agelidis
,
V. G.
,
2016
, “
Univariate and Multivariate Methods for Very Short-Term Solar Photovoltaic Power Forecasting
,”
Energy. Convers. Manage.
,
121
(
1
), pp.
380
390
.
21.
Louzazni
,
M.
,
Mosalam
,
H.
,
Khouya
,
A.
, and
Amechnoue
,
K.
,
2020
, “
A Non-Linear Auto-regressive Exogenous Method to Forecast the Photovoltaic Power Output
,”
Sustainable Energy Technologies and Assessments
,
38
(
10
), p.
100670
.
22.
Bugała
,
A.
,
Zaborowicz
,
M.
,
Boniecki
,
P.
,
Janczak
,
D.
,
Koszela
,
K.
,
Czekała
,
W.
, and
Lewicki
,
A.
,
2018
, “
Short-term Forecast of Generation of Electric Energy in Photovoltaic Systems
,”
Renewable Sustainable Energy Rev.
,
81
(
2016
), pp.
306
312
.
23.
Meng
,
X.
,
Gao
,
F.
,
Xu
,
T.
,
Zhou
,
K.
,
Li
,
W.
, and
Wu
,
Q.
,
2021
, “
Inverter-Data-Driven Second-Level Power Forecasting for Photovoltaic Power Plant
,”
IEEE. Trans. Ind. Electron.
,
68
(
8
), pp.
7034
7044
.
24.
Ronay
,
K.
,
Bica
,
D.
, and
Munteanu
,
C.
,
2017
, “
Micro-Grid Development Using Artificial Neural Network for Renewable Energy Forecast and System Control
,”
Procedia. Eng.
,
181
(
1
), pp.
818
823
.
25.
Lo Brano
,
V.
,
Ciulla
,
G.
, and
Di Falco
,
M.
,
2014
, “
Artificial Neural Networks to Predict the Power Output of a PV Panel
,”
Int. J. Photoenergy
,
2014
(
6
), p.
1
.
26.
Ogliari
,
E.
,
Grimaccia
,
F.
,
Leva
,
S.
, and
Mussetta
,
M.
,
2013
, “
Hybrid Predictive Models for Accurate Forecasting in PV Systems
,”
Energies
,
6
(
4
), pp.
1918
1929
.
27.
Wan
,
C.
,
Zhao
,
J.
,
Song
,
Y.
,
Xu
,
Z.
,
Lin
,
J.
, and
Hu
,
Z.
,
2015
, “
Photovoltaic and Solar Power Forecasting for Smart Grid Energy Management
,”
CSEE J. Power Energy Syst.
,
1
(
4
), pp.
38
46
.
28.
de Freitas Viscondi
,
G.
, and
Alves-Souza
,
S. N.
,
2019
, “
A Systematic Literature Review on Big Data for Solar Photovoltaic Electricity Generation Forecasting
,”
Sustainable Energy Technologies and Assessments
,
31
(
12
), pp.
54
63
.
29.
Pierro
,
M.
,
Bucci
,
F.
,
De Felice
,
M.
,
Maggioni
,
E.
,
Perotto
,
A.
,
Spada
,
F.
,
Moser
,
D.
, and
Cornaro
,
C.
,
2016
, “
Deterministic and Stochastic Approaches for Day-Ahead Solar Power Forecasting
,”
ASME J. Sol. Energy Eng.
,
139
(
2
), p.
021010
.
30.
Barbieri
,
F.
,
Rajakaruna
,
S.
, and
Ghosh
,
A.
,
2017
, “
Very Short-Term Photovoltaic Power Forecasting With Cloud Modeling: A Review
,”
Renewable. Sustainable. Energy. Rev.
,
75
(
1
), pp.
242
263
.
31.
Hyndman
,
R. J.
,
2006
, “
Another Look At Forecast-Accuracy Metrics for Intermittent Demand
,”
FORESIGHT
,
4
(
1
), pp.
43
46
.
32.
Yu
,
H.
, and
Wilamowski
,
B.
,
2011
, “
Levenberg–Marquardt Training
.” pp.
1
16
.
33.
Dionisio
,
A.
,
Menezes
,
R.
, and
Mendes
,
D. A.
,
2004
, “
Mutual Information: a Measure of Dependency for Nonlinear Time Series
,”
Physica A
,
344
(
1–2
), pp.
326
329
. Applications of Physics in Financial Analysis 4 (APFA4).
34.
Hippert
,
H.
,
Pedreira
,
C.
, and
Souza
,
R.
,
2001
, “
Neural Networks for Short-term Load Forecasting: a Review and Evaluation
,”
IEEE Trans. Power Syst.
,
16
(
1
), pp.
44
55
.
You do not currently have access to this content.