Abstract

Plastics as air–liquid desiccant contacting surfaces are being explored as a promising alternative to metallic surfaces in falling film towers. Nevertheless, the poor wetness of plastics has severely restricted its extensive practical applicability. In the current experimental study, a surface modification technique is employed to enhance the dehumidification performance of single polypropylene (PP) plastic plate surface. Dehumidification ability of three kinds of plastic plate surface: plain PP plate, modified PP plate A, and modified PP plate B were investigated and compared in an adiabatic vertical falling film tower. It was found that the best modified PP plate offered 48.1–127.0% improvement in dehumidification effectiveness as compared to the plain PP plate with an average improvement of 83.3%. Furthermore, a new correlation is developed to predict the dehumidification effectiveness of plastic and metallic surfaces of adiabatic/nonadiabatic falling film tower by incorporating the wetting factor and sensible cooling information in the correlation equation. The new approach takes into account the sensible cooling (nonadiabatic absorber) of the desiccant solution in the upper half of the absorption column. The proposed correlation demonstrates excellent accord with 11 experimental datasets, with an average error of 12.7%.

References

1.
Alizadeh
,
S.
,
2008
, “
A Feasibility Study of Using Solar Liquid-Desiccant Air Conditioner in Queensland, Australia
,”
ASME J. Sol. Energy Eng.
,
130
(
2
), p.
021005
.
2.
IEA
,
2018
,
The Future of Cooling
,
IEA
,
Paris
, https://www.iea.org/reports/the-future-of-cooling. Accessed September 5, 2021.
3.
Bichowsky
,
F. R.
, and
Kelley
,
G. A.
,
1935
, “
Concentrated Solutions in Air-Conditioning
,”
Ind. Eng. Chem.
,
27
(
8
), pp.
879
882
.
4.
Ullah
,
M. R.
,
Kettleborough
,
C. F.
, and
Gandhidasan
,
P.
,
1988
, “
Effectiveness of Moisture Removal for an Adiabatic Counterflow Packed Tower Absorber Operating With CaCl2-Air Contact System
,”
ASME J. Sol. Energy Eng.
,
110
(
2
), pp.
98
101
.
5.
Öberg
,
V.
, and
Goswami
,
D. Y.
,
1998
, “
Experimental Study of the Heat and Mass Transfer in a Packed Bed Liquid Desiccant Air Dehumidifier
,”
ASME J. Sol. Energy Eng.
,
120
(
4
), pp.
289
297
.
6.
Gommed
,
K.
,
Grossman
,
G.
, and
Ziegler
,
F.
,
2004
, “
Experimental Investigation of a LiCl-Water Open Absorption System for Cooling and Dehumidification
,”
ASME J. Sol. Energy Eng.
,
126
(
2
), pp.
710
715
.
7.
Gandhidasan
,
P.
,
1990
, “
Reconcentration of Aqueous Solutions in a Packed Bed: A Simple Approach
,”
ASME J. Sol. Energy Eng.
,
112
(
4
), pp.
268
272
.
8.
Longo
,
G. A.
, and
Gasparella
,
A.
,
2004
, “
Experimental Analysis on Chemical Dehumidification of Air by Liquid Desiccant and Desiccant Regeneration in a Packed Tower
,”
ASME J. Sol. Energy Eng.
,
126
(
1
), pp.
587
591
.
9.
Wang
,
L.
,
Xiao
,
F.
,
Zhang
,
X.
, and
Kumar
,
R.
,
2016
, “
An Experimental Study on the Dehumidification Performance of a Counter Flow Liquid Desiccant Dehumidifier
,”
Int. J. Refrig.
,
70
, pp.
289
301
.
10.
Kumar
,
R.
,
Dhar
,
P. L.
,
Jain
,
S.
, and
Asati
,
A. K.
,
2009
, “
Multi-absorber Stand Alone Liquid Desiccant Air-Conditioning Systems for Higher Performance
,”
Sol. Energy
,
83
(
5
), pp.
761
772
.
11.
Kim
,
J. K.
,
Park
,
C. W.
, and
Kang
,
Y. T.
,
2003
, “
The Effect of Micro-Scale Surface Treatment on Heat and Mass Transfer Performance for a Falling Film H2O/LiBr Absorber
,”
Int. J. Refrig.
,
26
(
5
), pp.
575
585
.
12.
Gao
,
W. Z.
,
Shi
,
Y. R.
,
Cheng
,
Y. P.
, and
Sun
,
W. Z.
,
2013
, “
Experimental Study on Partially Internally Cooled Dehumidification in Liquid Desiccant Air Conditioning System
,”
Energy Build.
,
61
, pp.
202
209
.
13.
Luo
,
Y.
,
Wang
,
M.
,
Yang
,
H.
,
Lu
,
L.
, and
Peng
,
J.
,
2015
, “
Experimental Study of Internally Cooled Liquid Desiccant Dehumidification: Application in Hong Kong and Intensive Analysis of Influencing Factors
,”
Build. Environ.
,
93
, pp.
210
220
.
14.
Dong
,
C.
,
Lu
,
L.
, and
Wen
,
T.
,
2017
, “
Experimental Study on Dehumidification Performance Enhancement by TiO2 Superhydrophilic Coating for Liquid Desiccant Plate Dehumidifiers
,”
Build. Environ.
,
124
(
1
), pp.
219
231
.
15.
Wen
,
T.
,
Lu
,
L.
, and
Dong
,
C.
,
2018
, “
Enhancing the Dehumidification Performance of LiCl Solution With Surfactant PVP-K30
,”
Energy Build.
,
171
, pp.
183
195
.
16.
Wen
,
T.
,
Lu
,
L.
,
Nie
,
Y.
, and
Zhong
,
H.
,
2019
, “
Development and Investigation on the Dehumidification and Corrosion Resistance Performance of a New Mixed Liquid Desiccant
,”
Int. J. Heat Mass Transf.
,
130
, pp.
72
82
.
17.
Saman
,
W. Y.
, and
Alizadeh
,
S.
,
2002
, “
An Experimental Study of a Cross-Flow Typi shoe Plate Heat Exchanger for Dehumidification/Cooling
,”
Sol. Energy
,
73
(
1
), pp.
59
71
.
18.
Liu
,
J.
,
Zhang
,
T.
,
Liu
,
X.
, and
Jiang
,
J.
,
2015
, “
Experimental Analysis of an Internally-Cooled/Heated Liquid Desiccant Dehumidifier/Regenerator Made of Thermally Conductive Plastic
,”
Energy Build.
,
99
, pp.
75
86
.
19.
Patil
,
D.
,
Kumar
,
R.
, and
Xiao
,
F.
,
2016
, “
Wetting Enhancement of Polypropylene Plate for Falling Film Tower Application
,”
Chem. Eng. Process. Process Intensif.
,
108
, pp.
1
9
.
20.
Prieto
,
J.
,
Ortiga
,
J.
, and
Coronas
,
A.
,
2017
, “
Experimental Performance of Polymeric Air-Solution Contactors for Liquid Desiccant Systems
,”
Appl. Therm. Eng.
,
121
, pp.
576
584
.
21.
Zhi
,
J.
,
Dong
,
C.
,
Guo
,
M.
,
Qi
,
R.
, and
Zhang
,
L.-z.
,
2019
, “
Wettability and Performance Enhancement With Durable Super-Hydrophilic Surfaces for Plastic Liquid Desiccant Dehumidification Systems
,”
Energy Build.
,
187
, pp.
77
85
.
22.
Conde
,
M. R.
,
2004
, “
Properties of Aqueous Solutions of Lithium and Calcium Chlorides: Formulations for Use in Air Conditioning Equipment Design
,”
Int. J. Therm. Sci.
,
43
(
4
), pp.
367
382
.
23.
Kumar
,
R.
,
Patil
,
D.
,
Xiao
,
F.
, and
Aras
,
P.
,
2017
, “
Experimental Investigation of Maldistribution in Vertical Plate Falling Film Tower
,”
Chem. Eng. Commun.
,
204
(
11
), pp.
1237
1245
.
24.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
25.
Kumar
,
R.
,
Patil
,
D.
,
Xiao
,
F.
, and
Lu
,
T.
,
2019
, “
Performance Intensification of Regeneration Process for Non-corrosive Plastic Plate Vertical Falling Film Tower
,”
Appl. Therm. Eng.
,
162
, p.
114301
.
26.
Chung
,
T. W.
,
1994
, “
Predictions of Moisture Removal Efficiencies for Packed-Bed Dehumidification Systems
,”
Gas Sep. Purif.
,
8
(
4
), pp.
265
268
.
27.
Chung
,
T. W.
, and
Luo
,
C. M.
,
1999
, “
Vapor Pressures of the Aqueous Desiccants
,”
J. Chem. Eng. Data
,
44
(
5
), pp.
1024
1027
.
28.
Martin
,
V.
, and
Goswami
,
D. Y.
,
2000
, “
Effectiveness of Heat and Mass Transfer Processes in a Packed Bed Liquid Desiccant Dehumidifier/Regenerator
,”
HVAC&R Res.
,
6
(
1
), pp.
21
39
.
29.
Liu
,
X. H.
,
Qu
,
K. Y.
, and
Jiang
,
Y.
,
2006
, “
Empirical Correlations to Predict the Performance of the Dehumidifier Using Liquid Desiccant in Heat and Mass Transfer
,”
Renew. Energy
,
31
(
10
), pp.
1627
1639
.
30.
Moon
,
C. G.
,
Bansal
,
P. K.
, and
Jain
,
S.
,
2009
, “
New Mass Transfer Performance Data of a Cross-Flow Liquid Desiccant Dehumidification System
,”
Int. J. Refrig.
,
32
(
3
), pp.
524
533
.
31.
Gao
,
W. Z.
,
Liu
,
J. H.
,
Cheng
,
Y. P.
, and
Zhang
,
X. L.
,
2012
, “
Experimental Investigation on the Heat and Mass Transfer Between Air and Liquid Desiccant in a Cross-Flow Dehumidifier
,”
Renew. Energy
,
37
(
1
), pp.
117
123
.
32.
Qi
,
R.
,
Lu
,
L.
, and
Yang
,
H.
,
2013
, “
Development of Simplified Prediction Model for Internally Cooled/Heated Liquid Desiccant Dehumidification System
,”
Energy Build.
,
59
, pp.
133
142
.
33.
Qi
,
R.
,
Lu
,
L.
, and
Yang
,
H.
,
2014
, “
Quick Performance Prediction for Internally Cooled/Heated Liquid Desiccant Dehumidification System
,”
Build. Serv. Eng. Res. Technol.
,
35
(
1
), pp.
99
112
.
34.
Wen
,
T.
,
Wang
,
M.
,
Chen
,
Y.
,
He
,
W.
, and
Luo
,
Y.
,
2019
, “
Thermal Properties Study and Performance Investigation of Potassium Formate Solution in a Falling Film Dehumidifier/Regenerator
,”
Int. J. Heat Mass Transf.
,
134
, pp.
131
142
.
35.
Liu
,
J.
,
Liu
,
X.
, and
Zhang
,
T.
,
2016
, “
Performance Comparison of Three Typical Types of Internally-Cooled Liquid Desiccant Dehumidifiers
,”
Build. Environ.
,
103
, pp.
134
145
.
36.
Liu
,
J.
,
Liu
,
X.
, and
Zhang
,
T.
,
2018
, “
Performance Comparison and Exergy Analysis of Different Flow Types in Internally-Cooled Liquid Desiccant Dehumidifiers (ICDs)
,”
Appl. Therm. Eng.
,
142
, pp.
278
291
.
37.
Wen
,
T.
,
Lu
,
L.
,
Dong
,
C.
, and
Luo
,
Y.
,
2018
, “
Development and Experimental Study of a Novel Plate Dehumidifier Made of Anodized Aluminum
,”
Energy
,
144
, pp.
169
177
.
38.
Wen
,
T.
,
Lu
,
L.
, and
Zhong
,
H.
,
2018
, “
Investigation on the Dehumidification Performance of LiCl/H2O-MWNTs Nanofluid in a Falling Film Dehumidifier
,”
Build. Environ.
,
139
, pp.
8
16
.
39.
Wen
,
T.
, and
Lu
,
L.
,
2019
, “
Numerical and Experimental Study on Internally Cooled Liquid Desiccant Dehumidification Concerning Film Shrinkage Shape and Vapor Condensation
,”
Int. J. Therm. Sci.
,
136
, pp.
316
327
.
40.
Narváez-Romo
,
B.
,
Chhay
,
M.
,
Zavaleta-Aguilar
,
E. W.
, and
Simões-Moreira
,
J. R.
,
2017
, “
A Critical Review of Heat and Mass Transfer Correlations for LiBr-H2O and NH3-H2O Absorption Refrigeration Machines Using Falling Liquid Film Technology
,”
Appl. Therm. Eng.
,
123
, pp.
1079
1095
.
41.
Cengel
,
Y. A.
, and
Ghajar
,
A. J.
,
2014
,
Heat and Mass Transfer: Fundamentals and Applications
, 5th ed.,
McGraw-Hill Professional
,
New York
.
42.
Yin
,
Y.
,
Zhang
,
X.
,
Wang
,
G.
, and
Luo
,
L.
,
2008
, “
Experimental Study on a New Internally Cooled/Heated Dehumidifier/Regenerator of Liquid Desiccant Systems
,”
Int. J. Refrig.
,
31
(
5
), pp.
857
866
.
43.
Peng
,
D.
,
Xu
,
S.
, and
Yang
,
H.
,
2020
, “
Heat and Mass Transfer Characteristics and Dehumidification Performance Improvement of an Evaporatively-Cooled Liquid Dehumidifier
,”
Appl. Therm. Eng.
,
178
, p.
115579
.
You do not currently have access to this content.