Abstract

The entropy generation minimization principle is used as the criterion to optimize the flow and heat transfer of solar collectors and heat exchangers that use molten salts NaCl–KCl–MgCl2 and KCl–MgCl2. The Gnielinski correlation for the Nusselt number versus Reynolds number, as well as the Moody friction factor given by Petukhov, was used for the calculation of the convective heat transfer coefficient and pressure loss due to friction in smooth tubes. For twisted-tap-inserted tube, equations of Nu and friction factor provided by Manglik and Bergles were used. The objective function, the entropy generation rate of the heat transfer system, was expressed as the function of Reynolds number, Prandtl number, heating flux, tube diameter, etc. As a result of the analysis, the optimum Reynolds number was determined and thereby to determine the optimum Nusselt number, convective heat transfer coefficient, friction factor, and tube diameter, which also allows the calculation of optimum flow velocity. The analysis was conducted in the fluid temperature range of 500–700 °C, which covers the operation temperature for supercritical CO2 power cycles in concentrated solar power (CSP) system. Optimized results from the smooth tube and twisted-tap-inserted tube are compared, which is important to the design of solar receivers for CSP systems.

References

1.
Francis
,
M.
, and
Sukunta
,
M.
,
2021
, “Solar Generation Was 3% of U.S. Electricity in 2020, But We Project It Will Be 20% by 2050.” U.S. Energy Information Administration (EIA), https://www.eia.gov/todayinenergy/detail.php?id=50357.
2.
Rabl
,
A.
,
Bendt
,
P.
, and
Gaul
,
H. W.
,
1982
, “
Optimization of Parabolic Trough Solar Collectors
,”
Sol. Energy
,
29
(
5
), pp.
407
417
.
3.
Gamil
,
A.
,
Gilani
,
S.
, and
Al-Kayiem
,
H.
,
2013
, “
Simulation of Incident Solar Power Input to Fixed Target of Central Receiver System in Malaysia
,”
Proceedings of the 2013 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (CSUDET)
,
Selangor, Malaysia
,
May 30–June 1
, pp.
92
97
.
4.
Chen
,
G.
,
2020
, “
Optimization of Blockage on Solar Panel Systems and Concentrated Solar Power (CSP) Systems
,”
Master thesis
,
Department of Aerospace and Mechanical Engineering, University of Arizona
,
Tucson, AZ
.
5.
Mills
,
A. F.
, and
Coimbra
,
C. F. M.
,
2016
,
Heat Transfer
, 3rd ed.,
Temporal Publishing, LLC
,
San Diego, CA
.
6.
Jankowski
,
T. A.
,
2009
, “
Minimizing Entropy Generation in Internal Flows by Adjusting the Shape of the Cross-Section
,”
Int. J. Heat Mass Transfer
,
52
(
15–16
), pp.
3439
3445
.
7.
Bejan
,
A.
,
1995
,
Entropy Generation Minimization—The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes
, 1st ed.,
CRC Press
,
Boca Raton, FL
.
8.
Hooman
,
K.
,
Gurgenci
,
H.
, and
Merrikh
,
A. A.
,
2007
, “
Heat Transfer and Entropy Generation Optimization of Forced Convection in Porous-Saturated Ducts of Rectangular Cross-Section
,”
Int. J. Heat Mass Transfer
,
50
(
11–12
), pp.
2051
2059
.
9.
Xu
,
X.
,
Guo
,
P.
,
Liu
,
W.
, and
Yang
,
W.
,
2017
, “
Entropy Generation and Carnot Efficiency Comparisons of High Temperature Heat Transfer Fluid Candidates for CSP Plants
,”
Int. J. Hydrogen Energy
,
42
(
31
), pp.
20316
20323
.
10.
Zhang
,
Y.
, and
Li
,
P.
,
2017
, “
Minimum System Entropy Production as the FOM of High Temperature Heat Transfer Fluids for CSP Systems
,”
Sol. Energy
,
152
, pp.
80
90
.
11.
Flesch
,
J.
,
Marocco
,
L.
,
Fritsch
,
A.
,
Niedermeier
,
K.
, and
Wetzel
,
T.
,
2020
, “
Entropy Generation Minimization Analysis of Solar Salt, Sodium, and Lead–Bismuth Eutectic as High Temperature Heat Transfer Fluids
,”
ASME J. Heat Transfer
,
142
(
4
), p.
042103
.
12.
Mahdi
,
A. S.
,
Al-Musawi
,
S. T. M.
,
Kadhim
,
Z. K.
,
Hussain
,
H. M.
, and
Habeeb
,
L. J.
,
2020
, “
Heat Transfer Enhancement by Using Twisted Tape in Horizontal and an Inclined Tube
,”
J. Mech. Eng. Res. Dev.
,
43
(
3
), pp.
106
124
.
13.
Promvonge
,
P.
, and
Eiamsa-ard
,
S.
,
2007
, “
Heat Transfer Behaviors in a Tube With Combined Conical-Ring and Twisted-Tape Insert
,”
Int. Commun. Heat Mass Transfer
,
34
(
7
), pp.
849
859
.
14.
Eiamsa-ard
,
S.
,
Wongcharee
,
K.
,
Eiamsa-ard
,
P.
, and
Thianpong
,
C.
,
2010
, “
Heat Transfer Enhancement in a Tube Using Delta-Winglet Twisted Tape Inserts
,”
Appl. Therm. Eng.
,
30
(
4
), pp.
310
318
.
15.
Chu
,
W. X.
,
Tsai
,
C. A.
,
Lee
,
B. H.
,
Cheng
,
K. Y.
, and
Wang
,
C. C.
,
2020
, “
Experimental Investigation on Heat Transfer Enhancement With Twisted Tape Having Various V-Cut Configurations
,”
Appl. Therm. Eng.
,
172
, p.
115148
.
16.
Chang
,
S. W.
,
Yu
,
K. W.
, and
Lu
,
M. H.
,
2005
, “
Heat Transfers in Tubes Fitted With Single, Twin, and Triple Twisted Tapes
,”
Exp. Heat Transfer
,
18
(
4
), pp.
279
294
.
17.
Piriyarungrod
,
N.
,
Eiamsa-ard
,
S.
,
Thianpong
,
C.
,
Pimsarn
,
M.
, and
Nanan
,
K.
,
2015
, “
Heat Transfer Enhancement by Tapered Twisted Tape Inserts
,”
Chem. Eng. Process.: Process Intensif.
,
96
, pp.
62
71
.
18.
Salam
,
B.
,
Biswas
,
S.
,
Saha
,
S.
, and
Bhuiya
,
M. M. K.
,
2013
, “
Heat Transfer Enhancement in a Tube Using Rectangular-Cut Twisted Tape Insert
,”
Procedia Eng.
,
56
, pp.
96
103
.
19.
Pidaprthi
,
B.
,
Li
,
P.
, and
Missoum
,
S.
,
2022
, “
Entropy-Based Optimization for Heat Transfer Enhancement in Tubes With Helical Fins
,”
ASME J. Heat Transfer
,
144
(
1
), p.
012001
.
20.
Herwig
,
H.
, and
Kock
,
F.
,
2006
, “
Direct and Indirect Methods of Calculating Entropy Generation Rates in Turbulent Convective Heat Transfer Problems
,”
Heat Mass Transfer
,
43
(
3
), pp.
207
215
.
21.
Kock
,
F.
, and
Herwig
,
H.
,
2005
, “
Entropy Production Calculation for Turbulent Shear Flows and Their Implementation in CFD Codes
,”
Int. J. Heat Fluid Flow
,
26
(
4
), pp.
672
680
.
22.
Saqr
,
K. M.
,
Shehata
,
A. L.
,
Taha
,
A. A.
, and
Abo ElAzm
,
M. M.
,
2016
, “
CFD Modelling of Entropy Generation in Turbulent Pipe Flow: Effects of Temperature Difference and Swirl Intensity
,”
Appl. Therm. Eng.
,
100
, pp.
999
1006
.
23.
Mwesigye
,
A.
,
Bello-Ochende
,
T.
, and
Meyer
,
J. P.
,
2013
, “
Numerical Investigation of Entropy Generation in a Parabolic Trough Receiver at Different Concentration Ratios
,”
Energy
,
53
(
C
), pp.
114
127
.
24.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
1997
,
Introduction to Heat Transfer
, 5th ed.,
John Wiley & Sons, Inc
,
Hoboken, NJ
.
25.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
1993
, “
Heat Transfer and Pressure Drop Correlations for Twisted-Tape Inserts in Isothermal Tubes: Part II-Transition and Turbulent Flow
,”
ASME J. Heat Transfer
,
115
(
4
), pp.
890
896
.
26.
Xu
,
X.
,
Wang
,
X.
,
Li
,
P.
,
Li
,
Y.
,
Hao
,
Q.
,
Xiao
,
B.
,
Elsentriecy
,
H.
, and
Gervasio
,
D.
,
2018
, “
Experimental Test of Properties of KCl–MgCl2 Eutectic Molten Salt for Heat Transfer and Thermal Storage Fluid in Concentrated Solar Power Systems
,”
ASME J. Solar Energy Eng.
,
140
(
5
), p.
051011
.
27.
Okafor
,
I. F.
,
Dirker
,
J.
, and
Meyer
,
J. P.
,
2014
, “
Influence of Circumferential Solar Heat Flux Distribution on the Heat Transfer Coefficients of Linear Fresnel Collector Absorber Tubes
,”
Sol. Energy
,
107
, pp.
381
397
.
28.
Bradshaw
,
R. W.
,
Dawson
,
D. B.
,
De la Rosa
,
W.
,
Gilbert
,
R.
,
Goods
,
S. H.
,
Hale
,
M. J.
,
Jacobs
,
P.
, et al
,
2002
, “
Final Test and Evaluation Results From the Solar Two Project
.”
SAND2002-0120
, edited by
Pacheco
,
J. E.
, pp.
1
294
.
29.
Rodríguez-Sánchez
,
M. R.
,
Soria-Verdugo
,
A.
,
Almendros-Ibáñez
,
J. A.
,
Acosta-Iborra
,
A.
, and
Santana
,
D.
,
2014
, “
Thermal Design Guidelines of Solar Power Towers
,”
Appl. Therm. Eng.
,
63
(
1
), pp.
428
438
.
30.
Wang
,
X.
,
Rincon
,
J. D.
,
Li
,
P.
,
Zhao
,
Y.
, and
Vidal
,
J.
,
2021
, “
Thermophysical Properties Experimentally Tested for NaCl-KCl-MgCl2 Eutectic Molten Salt as a Next-Generation High-Temperature Heat Transfer Fluids in Concentrated Solar Power Systems
,”
ASME J. Solar Energy Eng.
,
143
(
4
), p.
041005
.
31.
Nair
,
R. K.
,
1986
, “
Performance of Twisted-Tape Inserts in Laminar and Turbulent Flow
,”
M.S. thesis
,
Department of Mechanical Engineering, Iowa State University
,
Ames, IA
.
32.
Al-Fahed
,
S.
,
Chamra
,
L. M.
, and
Chakroun
,
W.
,
1998
, “
Pressure Drop and Heat Transfer Comparison for Both Microfin Tube and Twisted-Tape Inserts in Laminar Flow
,”
Exp. Therm. Fluid. Sci.
,
18
(
4
), pp.
323
333
.
33.
Bejan
,
A.
,
1997
,
Advanced Engineering Thermodynamics
, 2nd ed.,
John Wiley & Sons, Inc.
,
New York
.
34.
Zhang
,
Y.
,
Wang
,
X.
,
Hu
,
Q.
,
Li
,
P.
,
Liu
,
Q.
, and
Xu
,
B.
,
2022
, “
Experimental Study of Eutectic Molten Salts NaCl/KCl/ZnCl2 Heat Transfer Inside a Smooth Tube for High-Temperature Application
,”
ASME J. Solar Energy Eng.
,
144
(
4
), p.
044501
.
You do not currently have access to this content.