Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In this article, a theoretical–experimental study was conducted on a two-channel solar air collector (SAC-2C). For the experimental study, a prototype of the SAC-2C was designed, built, and instrumented with dimensions of 1.860 m in length, 0.605 m in width, and featuring two air channels of 5.5 mm and 5 mm thick each, respectively. The collector operates via forced convection and was positioned at an inclination angle of 18.88 deg at the Tecnológico Nacional de México CENIDET campus (TecNM/CENIDET) located in Cuernavaca, Morelos, Mexico. For the theoretical analysis, the method of global energy balances in two dimensions (2D) and under transient conditions was applied. Temperature differences of up to 3.0C are observed with respect to mathematical models that do not consider heat conduction terms in solid elements. These differences are accentuated in the glass cover. Furthermore, altitude’s impact on air density calculations could influence theoretical temperature profiles up to 3.0C. The theoretical results of the numerical model were validated with the information obtained from the experimental tests, which showed good similarity. It was observed that the elements of SAC-2C are sensitive to sudden changes in meteorological conditions. The system’s response time is not only associated with the characteristics of the materials but also with the thermal bridges between the absorber plate and the casing. The calculation of the appropriate heat transfer coefficients allowed the evaluation of energy gains or losses in the SAC-2C collector.

References

1.
Vivek
,
C. M.
,
2019
, “
Review of Flat Plate Solar Collectors and Solar Energy Utilization in India
,”
Int. J. Sci. Res. Rev.
,
8
(
2
), pp.
4391
4405
.
2.
Zhu
,
T. T.
,
Diao
,
Y. H.
,
Zhao
,
Y. H.
,
Ma
,
C.
,
Wang
,
T. Y.
, and
Liu
,
J.
,
2017
, “
A Comparative Investigation of Two Types of MHPA Flat-Plate Solar Air Collector Based on Exergy Analysis
,”
ASME J. Sol. Energy Eng.
,
139
(
5
), p.
051011
.
3.
Pal
,
P.
, and
Dev
,
R.
,
2019
, “
Thermal Modeling, Experimental Validation, and Comparative Analysis of Modified Solar Stills
,”
ASME J. Sol. Energy Eng.
,
141
(
6
), p.
061013
.
4.
Andrei-Stelian
,
B.
,
Abdelouhab
,
L.
,
Cristiana
,
C.
, and
Tiberiu
,
C.
,
2018
, “
Air Solar Collectors in Building Use—A Review
,”
E3S Web Conf.
,
32
(
1
), pp.
01003
01008
.
5.
ANSI/ASHRAE Standard 93-2010
,
2014
, “Methods of Testing to Determine the Thermal Performance of Solar Collectors,” Tech. Rep., The American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA.
6.
Afaq
,
J. M.
,
2020
, “
Thermal Evaluation of a Double-Pass Unglazed Solar Air Heater With Perforated Plate and Wire Mesh Layers
,”
J. Sustain.
,
12
(
9
), p.
3619
.
7.
Garay
,
R.
,
Arregi
,
B.
,
Gomis
,
I.
,
Bonnamy
,
P.
,
Raji
,
S.
, and
Lopez
,
J.
,
2017
, “
Performance Assessment of an Unglazed Solar Thermal Collector for Envelope Retrofitting
,”
Energy Procedia
,
115
(
1
), pp.
361
368
.
8.
Mahmoud
,
E.
, and
Ahmed
,
A.
,
2019
, “
Energy and Exergy Analysis of a Thermosiphon and Forced-Circulation Flat-Plate Solar Collector Using MWCNT/Water Nanofluid
,”
Case Stud. Thermal Eng.
,
14
(
1
), p.
100416
.
9.
Noghrehabadi
,
A.
,
Hajidavalloo
,
E.
, and
Moravej
,
M.
,
2016
, “
Experimental Investigation of Efficiency of Sqquare Flat-Plate Solar Collector Using SiO2/Water Nanofluid
,”
Case Stud. Thermal Eng.
,
8
(
1
), pp.
378
386
.
10.
Shockey
,
K. A.
,
Pearson
,
J. T.
, and
DeWitt
,
D. P.
,
1983
, “
Heat Transfer Characteristics of a Back-Corrugated Absorber Surface for Solar Air Collectors
,”
ASME J. Sol. Energy Eng.
,
105
(
1
), pp.
86
91
.
11.
Li
,
S.
,
Wang
,
H.
,
Meng
,
X.
, and
Wei
,
X.
,
2017
, “
Comparative Study on the Performance of a New Solar Air Collector With Different Surface Shapes
,”
Appl. Therm. Eng.
,
114
(
1
), pp.
639
644
.
12.
Bayrak
,
F.
,
Oztopb
,
H.
, and
Hepbaslic
,
A.
,
2013
, “
Energy and Exergy Analyses of Porous Baffles Inserted Solar Air Heaters for Building Applications
,”
Energy Build.
,
57
(
1
), pp.
338
345
.
13.
Ozgen
,
F.
,
Esen
,
M.
, and
Esen
,
H.
,
2009
, “
Experimental Investigation of Thermal Performance of a Double-Flow Solar Air Heater Having Aluminium Cans
,”
Renew. Energy
,
34
(
11
), pp.
2391
2398
.
14.
Manjunath
,
M. S.
,
Vasudeva Karanth
,
K.
, and
Yagnesh Sharma
,
N.
,
2019
, “
Numerical Analysis of Flat Plate Solar Air Heater Integrated With an Array of Pin Fins on Absorber Plate for Enhancement in Thermal Performance
,”
ASME J. Sol. Energy Eng.
,
141
(
5
), p.
051008
.
15.
Forson
,
F.
,
Nazha
,
M.
, and
Rajakaruna
,
H.
,
2003
, “
Experimental and Simulation Studies on a Single Pass, Double Duct Solar Air Heater
,”
Energy Convers. Manage.
,
44
(
8
), pp.
1209
1227
.
16.
Ito
,
S.
,
Kashima
,
K.
, and
Miura
,
N.
,
2006
, “
Flow Control and Unsteady-State Analysis on Thermal Performance of Solar Air Collectors
,”
ASME J. Sol. Energy Eng.
,
128
(
3
), pp.
354
359
.
17.
Zhai
,
Z. Q.
,
Dai
,
Y.
, and
Wang
,
R. Z.
,
2005
, “
Experimental Investigation on Air Heating and Natural Ventilation of a Solar Air Collector
,”
Energy Build.
,
37
(
4
), pp.
373
381
.
18.
Liu
,
Z.
,
Liu
,
Y.
,
Wu
,
D.
,
Jin
,
G.
,
Yu
,
H.
, and
Ma
,
W.
,
2020
, “
Performance and Feasibility Study of Solar-Air Source Pump Systems for Low-Energy Residential Buildings in Alpine Region
,”
J. Cleaner Prod.
,
256
(
1
), p.
120735
.
19.
Tuncer
,
A. D.
,
Amini
,
A.
, and
Khanlar
,
A.
,
2023
, “
Experimental and Transient CFD Analysis of Parallel-Flow Solar Air Collectors With Paraffin-Filled Recyclable Aluminum Cans as Latent Heat Energy Storage Unit
,”
J. Energy Storage
,
70
(
1
), p.
108009
.
20.
Fadhil
,
A. M.
,
Jalil
,
J. M.
, and
Bilal
,
G. A.
,
2024
, “
Experimental and Numerical Investigation of Solar Air Collector With Phase Change Material in Column Obstruction
,”
J. Energy Storage
,
79
(
1
), p.
110066
.
21.
Álvarez
,
G.
,
Arce
,
J.
,
Lira
,
L.
, and
Heras
,
M. R.
,
2004
, “
Thermal Performance of an Air Solar Collector With an Absorber Plate Made of Recyclable Aluminum Cans
,”
Sol. Energy
,
77
(
1
), pp.
107
113
.
22.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2006
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
John Wiley & Sons
,
Hoboken, NJ
.
23.
Álvarez
,
B.
,
Arce
,
J.
, and
Colorado
,
D.
,
2024
, “
Transient Study (Annual) of the Heat Transfer of a Two-Channel Solar Air Collector
,”
ASME J. Sol. Energy Eng.
,
146
(
1
), p.
011005
.
24.
Ong
,
K. S.
,
1995
, “
Thermal Performance of Solar Air Heaters: Mathematical Model and Solution Procedure
,”
Sol. Energy
,
55
(
2
), pp.
93
109
.
25.
Cengel
,
Y. A.
, and
Cimbala
,
J. M.
,
2006
,
Mecánica De Fluidos: Fundamentos y Aplicaciones
, 1st ed.,
McGraw-Hill
,
México, D.F.
26.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes
, 4th ed.,
John Wiley & Sons
,
Hoboken, NJ
.
27.
Cianfrinia
,
C.
,
Corcione
,
M.
,
D’Oraziob
,
A.
, and
Habib
,
E.
,
2008
, “
Laminar Natural Convection Heat Transfer From Vertical and Inclined Plates Facing Upwards and Downwards
,”
Heat Transfer, Fluid Mechanics and Thermodynamics
,
South Africa
,
June 30–July 2
.
28.
Vliet
,
G.
, and
Ross
,
D.
,
1975
, “
Turbulent Natural Convection on Upward and Downward Facing Inclined Constant Heat Flux Surfaces
,”
ASME J. Heat Transfer
,
97
(
4
), pp.
549
554
.
29.
Swinbank
,
W.
,
1963
, “
Long-Wave Radiation From Clear Skies
,”
Q. J. R. Meteorol. Soc.
,
89
(
381
), pp.
339
348
.
30.
Churchill
,
S.
, and
Ozoe
,
H.
,
1973
, “
Correlations for Laminar Forced Convection With Uniform Heating in Flow Over a Plate and in Developing and Fully Developed Flow in a Tube
,”
ASME J. Heat Transfer
,
95
(
1
), pp.
78
84
.
31.
Hausen
,
H.
,
1943
, “
Darstellung des warme-berganges in rohren durch verallgemeinerte potenzbeziehyngen
,”
VDI. Verfahr
,
4
(
1
), pp.
91
98
.
32.
Whitaker
,
S.
,
1972
, “
Forced Convection Heat Transfer Correlations for Flow in Pipes, Past Flat Plates, Single Cylinders, Single Spheres, and for Flow in Packed Beds and Tube Bundles
,”
AIChE J.
,
18
(
2
), pp.
361
371
.
You do not currently have access to this content.